Monitoring neural activity in the central nervous system often utilizes silicon-based microelectromechanical system (MEMS) probes. Despite their effectiveness in monitoring, these probes have a fragility issue, limiting their application across various fields. This study introduces flexible printed circuit board (FPCB) neural probes characterized by robust mechanical and electrical properties. The probes demonstrate low impedance after platinum coating, making them suitable for multiunit recordings in awake animals. This capability allows for the simultaneous monitoring of a large population of neurons in the brain, including cluster data. Additionally, these probes exhibit no fractures, mechanical failures, or electrical issues during repeated-bending tests, both during handling and monitoring. Despite the possibility of using this neural probe for signal measurement in awake animals, simply applying a platinum coating may encounter difficulties in chronic tests and other applications. Furthermore, this suggests that FPCB probes can be advanced by any method and serve as an appropriate type of tailorable neural probes for monitoring neural systems in awake animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356038 | PMC |
http://dx.doi.org/10.3390/mi15081058 | DOI Listing |
Curr Protoc
January 2025
Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland.
In vivo calcium imaging in freely moving rats using miniscopes provides valuable information about the neural mechanisms of behavior in real time. A gradient index (GRIN) lens can be implanted in deep brain structures to relay activity from single neurons. While such procedures have been successful in mice, few reports provide detailed procedures for successful surgery and long-term imaging in rats, which are better suited for studying complex human behaviors.
View Article and Find Full Text PDFChem Senses
December 2024
Department of Biological Science, Florida State University, Tallahassee, FL.
Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.
View Article and Find Full Text PDFElife
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
Intracranial electrical kilohertz stimulation has recently been shown to achieve similar therapeutic benefit as conventional frequencies around 140 Hz. However, it is unknown how kilohertz stimulation influences neural activity in the mammalian brain. Using cellular calcium imaging in awake mice, we demonstrate that intracranial stimulation at 1 kHz evokes robust responses in many individual neurons, comparable to those induced by conventional 40 and 140 Hz stimulation in both the hippocampus and sensorimotor cortex.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Department of Pharmacology, Physiology and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH.
Lower body negative pressure (LBNP) has been used for decades in humans to model arterial baroreceptor unloading and represents a powerful tool for evaluating cardiovascular responses to orthostatic challenge. However, LBNP studies in animals have been limited to conditions of anesthesia or sedation, where cardiovascular reflexes are altered. Given the consequent uncertainties, the usefulness of LBNP studies in these preclinical models has been severely hampered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!