We propose a method for increasing power extraction from a thermoelectric generator (TEG) by switching between series/parallel circuit configurations of thermoelectric elements, which can adjust the internal impedance of the TEG. The power characteristics of the TEG can be adjusted to the load characteristics of the connected device and the relevant ambient temperature. In this paper, we analyzed the change in the TEG characteristics with the series/parallel switching function. We evaluated the power supply to the connected devices at different ambient temperatures and different series/parallel configurations and confirmed that the extracted power could be increased. By theoretically analyzing the circuit configuration of the thermoelectric devices, the switching required to improve the power extraction, and the temperature difference at which switching occurred, we devised a design method for a TEG with circuit switching in order to increase power extraction with any device. We demonstrated the configuration of switching by using a system in which a TEG supplied power to an external wireless transmitter circuit. In this system, the optimal configuration differed at temperature differences of 3.0 K and 4.0 K. At a temperature difference of 3.0 K, the 2-series/1-parallel configuration provided 10% more power to the external circuit than the 1-series/2-parallel configuration. On the other hand, at the temperature difference of 4.0 K, the 1-series/2-parallel configuration provided 23% more power than the 2-series/1-parallel configuration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356095 | PMC |
http://dx.doi.org/10.3390/mi15081015 | DOI Listing |
Sci Rep
January 2025
College of Water Conservancy and Civil Engineering, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, China.
The southeastern region of Tibet, which serves as the primary concentration area for marine-type glaciers, has fostered a multitude of glacial lakes that are highly sensitive to global climate change. Glacial lakes play a crucial role in regulating the freshwater ecosystems of the region, but they also pose a significant threat to local infrastructure and populations due to flooding caused by glacial lake outbursts. Currently, a limited amount of research has focused on the monitoring and analysis of glacial lakes in southeastern Tibet.
View Article and Find Full Text PDFSci Rep
January 2025
Zhongyu (Fujian) Digital Technology Co., Ltd, Fuzhou, 350108, China.
Attention mechanisms have been introduced to exploit deep-level information for image restoration by capturing feature dependencies. However, existing attention mechanisms often have limited perceptual capabilities and are incompatible with low-power devices due to computational resource constraints. Therefore, we propose a feature enhanced cascading attention network (FECAN) that introduces a novel feature enhanced cascading attention (FECA) mechanism, consisting of enhanced shuffle attention (ESA) and multi-scale large separable kernel attention (MLSKA).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
Nanotechnology has experienced significant advancements, attracting considerable attention in various biomedical applications. This innovative study synthesizes and characterizes Ge/PLA/AuNCs (gelatin/PLA/gold nanocomposites) using Syzygium cumini extract to evaluate their various biomedical applications. The UV-Visible spectroscopy results in an absorption peak at 534 nm were primarily confirmed by Ge/PLA/AuNCs synthesis.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.
View Article and Find Full Text PDFNat Commun
January 2025
The beta decay of the lightest charmed baryon provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay , utilizing 4.5 fb of electron-positron annihilation data collected with the BESIII detector.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!