We report the results of synthesis of zinc selenide (ZnSe) nanocrystals into SiO/Si track templates formed by irradiation with 200 MeV Xe ions up to a fluence of 10 ions/cm. Zinc selenide nanocrystals were obtained by chemical deposition from the alkaline aqueous solution. Scanning electron microscopy, X-ray diffractometry, Raman and photoluminescence spectroscopy, and electrical measurements were used for characterization of synthesized ZnSe/SiO/Si nanocomposites. XRD data for as-deposited precipitates revealed the formation of ZnSe nanocrystals with cubic crystal structure, spatial syngony F-43m (216). According to non-empirical calculations using GGA-PBE and HSE06 functionals, ZnSe crystal is a direct-zone crystal with a minimum bandgap width of 2.36 eV and anisotropic electronic distribution. It was found that a thermal treatment of synthesized nanocomposites at 800 °C results in an increase in ZnSe nanocrystallites size as well as an increase in emission intensity of created precipitates in a broad UV-VIS spectra range. However, vacuum conditions of annealing still do not completely prevent the oxidation of zinc selenide, and a formation of hexagonal ZnO phase is registered in the annealed samples. The current-voltage characteristics of the synthesized nanocomposites proved to have n-type conductivity, as well as increased conductivity after annealing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356022PMC
http://dx.doi.org/10.3390/ma17164149DOI Listing

Publication Analysis

Top Keywords

znse nanocrystals
12
zinc selenide
12
synthesized nanocomposites
8
znse
5
annealing structural
4
structural optical
4
optical electrophysical
4
electrophysical properties
4
properties znse
4
nanocrystals
4

Similar Publications

Maize ( L.) is an important cereal crop grown in arid and semiarid regions of the world. During the reproductive phase, it is more frequently exposed to drought stress, resulting in lower grain yield due to oxidative damage.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers successfully performed surface passivation of colloidal semiconductor nanocrystals at room temperature (25 °C), unlike the typical high-temperature methods, using prenucleation-stage ZnSe clusters prepared at 160 °C.
  • This approach enabled the transformation of photoluminescent (PL)-inactive CdSe magic-size clusters (MSCs) into PL-active ones, which produced a sharp photoluminescent signal at 460 nm.
  • The study reveals that the formation of Zn-Se bonds occurs independently of the actual growth of the ZnSe shell and highlights the principle of isodesmic reactions, paving the way for milder surface passivation techniques.
View Article and Find Full Text PDF

Growth of Ultrathick CuInS Shells for Supersized Core/Shell Nanoparticles.

Inorg Chem

December 2024

Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.

Article Synopsis
  • Growth of ultrathick shells on quantum dots (QDs) enhances the properties of nanoparticles (NPs).
  • CuInSe quantum dots were created with a uniform surface, allowing for a superthick shell (∼45 nm) of CuInS to be added, resulting in large core/shell nanostructures (~100 nm).
  • This technique was further applied to create other core/shell configurations, indicating potential for new chemical and physical phenomena in nanomaterials, beneficial for research and commercial applications.
View Article and Find Full Text PDF

InP-based quantum dots (QDs) are widely adopted as a superior alternative to CdSe-based QDs in various fields owing to their high quantum yield, environmental friendliness, and excellent stability. However, improving its color purity remains a challenging task. In this work, we employ a multistage heating strategy to optimize the nucleation and shell growth processes of amino-phosphine-based InP/ZnSe/ZnS QDs for reducing emission linewidths.

View Article and Find Full Text PDF

Coaxially Bi/ZnO@ZnSe Array Photocathode Enables Highly Efficient CO2 to C1 Conversion via Long-lived High-energy Photoelectrons.

ChemSusChem

October 2024

State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China.

Article Synopsis
  • The study focuses on developing effective cathode materials for the photoelectrochemical CO reduction reaction (PEC CO RR) to convert carbon monoxide into valuable products using high-energy photoelectrons.
  • A coaxial ZnO@ZnSe heterostructure was created, enhanced by depositing metallic Bi nanoparticles on its surface, resulting in an efficient Bi/ZnO@ZnSe photocathode.
  • This photocathode design features a large surface area for better mass transfer and captures high-energy photoelectrons effectively, achieving over 88.9% Faradaic efficiency in CO conversion while maintaining stability.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!