Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Concrete production is associated with extensive energy consumption and significant CO emissions. In addition, tremendous amounts of freshwater are used as a mixing agent. Urgency is increasing to develop sustainable cementitious materials and promote freshwater-saving strategies. An environmentally friendly alternative binder, seawater mixed with one part alkali activated material, is studied. In this work, a cradle-to-gate life cycle assessment was applied to study the equivalent CO emission and cost properties of the clinker-free binder. The seawater mixed mortar possesses comparable mechanical properties to Portland cement, with 3 d flexural and compressive strengths of 5.3 MPa and 25.2 MPa. In addition, the mortar developed in this work is of similar cost as commercial cement, but reduces CO emissions by 44.8%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356658 | PMC |
http://dx.doi.org/10.3390/ma17164113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!