This research aims to find suitable processing methods that allow the reuse of wood waste to produce wood waste-based engineered wood logs for construction that meet the strength requirements for structural timber for sawn structural softwood. Three types of wood waste were examined: wood packaging waste (W), waste from the construction and furniture industry (PLY), and door manufacturing waste (DW). The wood waste was additionally crushed and sieved, and the granulometric composition and shape of the particles were evaluated. The microstructure of the surface of the wood waste particles was also analysed. A three-component biopolyurethane adhesive was used to bind wood waste particles. An analysis of the contact zones between the particles and biopolyurethane was performed, and the adhesion efficiency of their surfaces was evaluated. Analysis was performed using tensile tests, and the formation of contact zones was analysed with a scanning electron microscope. The wood particles were chemically treated with sodium carbonate, calcium hypochlorite, and peroxide to increase the efficiency of the contact zones between the particles and the biopolyurethane adhesive. Chemical treatment made fillers up to 30% lighter and changed the tensile strength depending on the solution used. The tensile strength of engineered wood prepared from W and treated with sodium carbonate increased from 8331 to 12,702 kPa compared to untreated waste. Additionally, the compressive strength of engineered wood made of untreated and treated wood waste particles was determined to evaluate the influence of the wood particles on the strength characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356128 | PMC |
http://dx.doi.org/10.3390/ma17164087 | DOI Listing |
Polymers (Basel)
December 2024
Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
This study investigates the properties of composites produced using post-consumer polypropylene (PP) reinforced with lignocellulosic fillers from (black cumin) and rapeseed pomace. Using agri-food by-products like pomace supports waste management efforts and reduces the demand for wood in wood-plastic composites. The composite production method combined extrusion and hot flat pressing.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary.
In recent years, the environmental impacts of plastic production and consumption have become increasingly significant, particularly due to their petroleum-based origins and the substantial waste management challenges they pose. Currently, global plastic waste production has reached 413.8 million metric tons across 192 countries, contributing notably to greenhouse gas emissions.
View Article and Find Full Text PDFMolecules
December 2024
Chemical Engineering Department, University of Guadalajara-CUCEI, Blvd. Marcelino García Barragán #1421, esq. Calzada Olímpica, Guadalajara 44430, Jalisco, Mexico.
Tequila vinasses are organic wastes generated during ethanol fermentation at elevated temperatures (≥90 °C) and pH ≤ 4.0, making them hazardous to the environment. This paper describes a new, simplified UV-vis spectroscopy-based procedure for monitoring the adsorption of color compounds in tequila vinasses onto silica-based adsorbents, along with an optimized synthesis method to produce the most efficient sol-gel synthesized thiol-functionalized adsorbent.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Civil Engineering, University of Burgos, 09001 Burgos, Spain.
The glass fiber-reinforced polymer (GFRP) materials of wind turbine blades can be recovered and recycled by crushing, thereby solving one of the most perplexing problems facing the wind energy sector. This process yields selectively crushed wind turbine blade (SCWTB), a novel waste that is almost exclusively composed of GFRP composite fibers that can be revalued in terms of their use as a raw material in concrete production. In this research, the fresh and mechanical performance of concrete made with 1.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Latvian State Institute of Wood Chemistry, Dzerbenes iela 27, LV 1006 Riga, Latvia.
In this study, different combinations of mycelium biocomposites (MBs) were developed using primary substrates sourced from the local agricultural, wood processing, and paper industries. The physicomechanical properties, thermal conductivity, and fire behavior were evaluated. The highest bending strength was achieved in composites containing waste fibers and birch sanding dust, with a strength competitive with that of synthetic polymers like EPS and XPS, as well as some commercial building materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!