Recent Progress of Iron-Based Magnetic Absorbers and Its Applications in Elastomers: A Review.

Materials (Basel)

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.

Published: August 2024

AI Article Synopsis

  • * This paper explores the mechanisms behind absorptive materials, focusing on enhancing the absorption abilities of iron-based magnetic absorbers (IBMAs) through various fabrication techniques and material properties.
  • * It discusses the current state of research on IBMAs, their applications in elastomers, existing limitations, and future development goals, such as creating lightweight, thin, and highly effective absorption components.

Article Abstract

As a result of continuing scientific and technological progress, electromagnetic waves have become increasingly pervasive across a variety of domains, particularly within the microwave frequency range. These waves have found extensive applications in wireless communications, high-frequency electronic circuits, and several related fields. As a result, absorptive materials have become indispensable for dual-use applications across both the military and civilian domains because of their exceptional electromagnetic wave absorption properties. This paper, beginning with the operating mechanisms of absorptive materials, aims to provide an overview of the strategies that have been used to enhance the absorption performance of iron-based magnetic absorbers (IBMAs) and discuss the current research status of absorptive material components. The fabrication of a ferromagnetic absorber in terms of morphology, heterointerface coupling, and macrostructural enhancements and the effect of powder characteristics on their electromagnetic properties are discussed. Additionally, the application of IBMAs in elastomers is summarized. Finally, this paper summarizes the limitations of existing ferromagnetic absorber materials and offers a perspective on their potential future developments. The objective of the ongoing research is to fabricate absorptive components that have thin profiles, lightweight construction, wide absorption frequency ranges, and strong absorption capabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356331PMC
http://dx.doi.org/10.3390/ma17164058DOI Listing

Publication Analysis

Top Keywords

iron-based magnetic
8
magnetic absorbers
8
absorptive materials
8
ferromagnetic absorber
8
progress iron-based
4
absorbers applications
4
applications elastomers
4
elastomers review
4
review result
4
result continuing
4

Similar Publications

Targeting Reactive Oxygen Species for Diagnosis of Various Diseases.

J Funct Biomater

December 2024

Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.

Reactive oxygen species (ROS) are generated predominantly during cellular respiration and play a significant role in signaling within the cell and between cells. However, excessive accumulation of ROS can lead to cellular dysfunction, disease progression, and apoptosis that can lead to organ dysfunction. To overcome the short half-life of ROS and the relatively small amount produced, various imaging methods have been developed, using both endogenous and exogenous means to monitor ROS in disease settings.

View Article and Find Full Text PDF

Many-body interactions in metal-organic frameworks (MOFs) are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy (MA) induced by the substrate and still not well understood. Here, on-surface coordination chemistry is used to synthesize on Ag(111) and superconducting Pb(111) an iron-based spin chain by using pyrene-4,5,9,10-tetraone (PTO) precursors as ligands.

View Article and Find Full Text PDF

The origins of light-independent magnetoreception in humans.

Front Hum Neurosci

November 2024

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

Article Synopsis
  • Earth's abundance of iron has been essential for the development of life, influencing biochemical processes and leading to the emergence of early life forms near hydrothermal vents.
  • Iron also plays a role in the evolution of organisms like magnetotactic bacteria, which can detect the Earth's geomagnetic field, showing adaptations beyond humans' conventional senses.
  • Research on species such as zebrafish and pigeons indicates that various life forms have specialized mechanisms for geomagnetic sensing, hinting at complex interactions in the brain related to magnetic fields and their implications for human magnetoreception.
View Article and Find Full Text PDF

In the fabrication of soft magnetic composites, the lattice mismatch between the inorganic insulation layer and the iron matrix often leads to the formation of cracks during the molding process, which significantly impairs the operational performance of the materials. Consequently, it is imperative to develop novel strategies for inorganic insulation coatings that offer high electrical resistivity and thermal stability and are less susceptible to cracking during formation. This paper presents a new structure for soft magnetic composites that incorporates FePO as an intermediate transition layer between the iron-based soft magnetic particles and the inorganic ceramic insulation layer.

View Article and Find Full Text PDF

Three-dimensional quantum Griffiths singularity in bulk iron-pnictide superconductors.

Natl Sci Rev

December 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100091, China.

The quantum Griffiths singularity (QGS) is a phenomenon driven by quenched disorders that break conventional scaling invariance and result in a divergent dynamic critical exponent during quantum phase transitions (QPT). While this phenomenon has been well-documented in low-dimensional conventional superconductors and in three-dimensional (3D) magnetic metal systems, its presence in 3D superconducting systems and in unconventional high-temperature superconductors (high- SCs) remains unclear. In this study, we report the observation of robust QGS in the superconductor-metal transition (SMT) of both quasi-2D and 3D anisotropic unconventional high- superconductor CaFe Ni AsF ( <5%) bulk single crystals, where the QGS states persist to up to 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!