This research addresses a notable gap in understanding the synergistic effects of high carbon wood bottom ash (BA) and silica fly ash (FA) on cement hydration and concrete durability by using them as a supplementary material to reduce the amount of cement in concrete and CO emissions during cement production. This study analyses the synergistic effect of FA and BA on cement hydration through X-ray diffraction (XRD), thermal analysis (TG, DTG), scanning electron microscopy (SEM), density, ultrasonic pulse velocity (UPV), compressive strength, and temperature monitoring tests. In addition, it evaluates concrete properties, including compressive strength, UPV, density, water absorption kinetics, porosity parameters, predicted resistance to freezing and thawing cycles, and results of freeze-thawing resistance. The concrete raw materials were supplemented with varying percentages of BA and FA, replacing both cement and fine aggregate at levels of 0%, 2.5%, 5%, 10% and 15%. The results indicate that a 15% substitution of BA and FA delays cement hydration by approximately 5 h and results in only a 6% reduction in compressive strength, with the hardened cement paste showing a strength similar to a 15% replacement with FA. Concrete mixtures with 2.5% BA and 2.5% FA maintained the same maximum hydration temperature and duration as the reference mix. Furthermore, the combined use of both ashes provided adequate resistance to freeze-thaw cycles, with only a 4.7% reduction in compressive strength after 150 cycles. Other properties, such as density, UPV and water absorption, exhibited minimal changes with partial cement replacement by both ashes. This study highlights the potential benefits of using BA and FA together, offering a sustainable alternative that maintains concrete performance while using waste materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356360 | PMC |
http://dx.doi.org/10.3390/ma17164031 | DOI Listing |
Sci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFSensors (Basel)
January 2025
China Railway Seventh Group Co., Ltd., Zhengzhou 450016, China.
This paper investigates the use of the BOTDA (Brillouin Optical Time-Domain Analysis) technology to monitor a large-scale bored pile wall in the field. Distributed fiber optic sensors (DFOSs) were deployed to measure internal temperature and strain changes during cement grouting, hardening, and excavation-induced deformation of a secant pile wall. The study details the geological conditions and DFOS installation process.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Gansu Industry Technology Center of Transportation Construction Materials Research and Application, Lanzhou Jiaotong University, Lanzhou 730070, China.
In order to study the effect of the crushing process on the fine separation of reclaimed asphalt pavement (RAP) and the mechanical properties of cement-stabilised aggregate mixed with RAP, four crushing processes, namely small mesh hammer crushing, hammer crushing, jaw crushing, and double roller crushing, were used to separate the aggregate from asphalt in RAP materials. The effect of crushing on the grading characteristics and agglomeration condition of RAP material was investigated. RAP cement-stabilised aggregates were prepared and analysed for their mechanical properties and micro-morphology using RAP materials obtained from fine separation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Magnesium slag is a by-product of the magnesium industry. As an auxiliary cementitious material incorporated into concrete, it can make full use of waste resources and has a certain potential for hydration and carbonation. To improve the mechanical properties of the concrete, the influence mechanism and strengthening mechanism of the carbon curing method on mechanical properties of magnesium slag concrete were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!