AI Article Synopsis

  • Nanocomposites using natural rubber (NR) and organomodified montmorillonite (MMT) nanoparticles were created with two types of polyoxazolines as surface modifiers.
  • Characterization techniques like X-ray diffraction and transmission electronic microscopy showed that the addition of nanofillers notably improved mechanical properties, specifically tensile strength and elongation at break, especially in composites containing carbon blacks.
  • Among the two surface modifiers tested, poly(2-ethyl-2-oxazoline) was found to be the most effective for modifying MMT, making it a promising additive for tyre treads that balances fuel efficiency and driving safety.

Article Abstract

Nanocomposites with a natural rubber (NR) matrix containing organomodified montmorillonite (MMT) as a precursor of nanoparticles were prepared using two different polyoxazolines as surface modifiers of the MMT. The materials were characterized by X-ray diffraction, transmission electronic microscopy and ultimate mechanical properties, and parameters obtained by DMTA method (storage and loss moduli and loss tangent) were determined. It was found that the effect of nanofillers presence has a significant effect on tensile strength as well as elongation at break, which are higher for materials with higher viscosity due to the presence of carbon blacks compared to the composites without carbon blacks. From the two modifiers, poly(2-ethyl-2-oxazoline) was identified as a prospective modifier for surface modification of MMT used as the possible additive for tyre treads exhibiting optimal balance between fuel consumption and safety of driving concerning breaking action and lateral breakaway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356297PMC
http://dx.doi.org/10.3390/ma17164017DOI Listing

Publication Analysis

Top Keywords

nanocomposites natural
8
natural rubber
8
carbon blacks
8
rubber montmorillonite
4
montmorillonite modified
4
modified poly2-oxazolines
4
poly2-oxazolines nanocomposites
4
rubber matrix
4
matrix organomodified
4
organomodified montmorillonite
4

Similar Publications

This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.

View Article and Find Full Text PDF

A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.

View Article and Find Full Text PDF

Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF
Article Synopsis
  • The study examines how poly(lactic acid) (PLA) nanocomposite films with Hec-g@PS perform in extreme natural environments, focusing on their degradation and ability to adsorb Cu(II).
  • During degradation, PLA/Hec-g@PS films exhibited lower roughness and crack rates compared to standard PLA films, likely due to enhanced interactions within the material that slowed degradation.
  • The PLA/Hec-g@PS films not only extended lifespan by 1.08 times but also showed improved Cu(II) adsorption, making them promising for applications in wastewater treatment and soil remediation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!