Nanocomposites with a natural rubber (NR) matrix containing organomodified montmorillonite (MMT) as a precursor of nanoparticles were prepared using two different polyoxazolines as surface modifiers of the MMT. The materials were characterized by X-ray diffraction, transmission electronic microscopy and ultimate mechanical properties, and parameters obtained by DMTA method (storage and loss moduli and loss tangent) were determined. It was found that the effect of nanofillers presence has a significant effect on tensile strength as well as elongation at break, which are higher for materials with higher viscosity due to the presence of carbon blacks compared to the composites without carbon blacks. From the two modifiers, poly(2-ethyl-2-oxazoline) was identified as a prospective modifier for surface modification of MMT used as the possible additive for tyre treads exhibiting optimal balance between fuel consumption and safety of driving concerning breaking action and lateral breakaway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356297 | PMC |
http://dx.doi.org/10.3390/ma17164017 | DOI Listing |
Front Chem
December 2024
Circa Renewable Chemistry Institute, Department of Chemistry, University of York, York, United Kingdom.
This study focuses on the fabrication and characterisation of single-walled carbon nanotube (SWCNT) buckypapers and polyethersulfone (PES) flat-sheet membranes using Cyrene, aiming toevaluate its efficacy as a green solvent for these applications. Pristine SWCNTs were dispersed inCyrene without surfactants and compared to N-Methyl-2-pyrrolidone (NMP) dispersions. Buckypapers were fabricated from these dispersions and characterised using Scanning ElectronMicroscopy (SEM), Atomic Force Microscopy (AFM), and infrared spectroscopy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Natural and Computational Sciences, Wolaita Soddo University, P. Box 138, Wolaita Soddo, Ethiopia.
A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic.
View Article and Find Full Text PDFSci Rep
January 2025
Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.
Langmuir
January 2025
Natural Environment Experimental Research Center in Turpan, Xinjiang Uygur Autonomous Region, Turpan 838000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!