Recycled Aggregate Integration for Enhanced Performance of Polymer Concrete.

Materials (Basel)

Department of Building Materials Engineering, Faculty of Civil Engineering, Warsaw University of Technology, Armii Ludowej 16, 00-637 Warsaw, Poland.

Published: August 2024

The objective of the research outlined in this paper is to propose an eco-friendly solution that simultaneously contributes to improving the characteristics of polymer composites. The analyzed solution entails the use of recycled aggregate from crushed concrete rubble. The authors conducted experiments to test the consistency, density, flexural strength, compressive strength, and microstructure of polymer concrete (PC) with different proportions of recycled aggregate (RA). It was found that PC with RA had a higher compressive strength, 96 MPa, than PC with natural aggregate, 89.1 MPa, owing to the formation of a double-layer shell of resin and calcium filler on the surface of porous RA grains. Using a resin with a lower viscosity could improve the performance of PC with RA by filling the cracks and penetrating deeper into the pores. RA is a valuable material for PC production, especially when it contains porous grains with poor mechanical properties, which are otherwise unsuitable for other applications. This article also highlights the environmental and economic benefits of using RA in PC, as it can reduce waste generation and natural resource consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355950PMC
http://dx.doi.org/10.3390/ma17164007DOI Listing

Publication Analysis

Top Keywords

recycled aggregate
12
polymer concrete
8
compressive strength
8
porous grains
8
aggregate integration
4
integration enhanced
4
enhanced performance
4
performance polymer
4
concrete objective
4
objective outlined
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!