Poor water solubility of drugs is a limiting factor for their bioavailability and pharmacological activity. Many approaches are known to improve drug solubility, and among them, the physical method, solid dispersions (SDs), is applied. SDs are physical mixtures of a drug and a carrier, sometimes with the addition of a surfactant, which can be obtained by milling, cryomilling, spray-drying, or lyophilization processes. In this study, solid dispersions with etodolac (ETD-SDs) were prepared by the milling method using different carriers, such as hypromellose, polyvinylpyrrolidone, copovidone, urea, and mannitol. Solubility studies, dissolution tests, morphological assessment, thermal analysis, and FTIR imaging were applied to evaluate the SD properties. It was shown that the ball-milling process can be applied to obtain SDs with ETD. All designed ETD-SDs were characterized by higher water solubility and a faster dissolution rate compared to unprocessed ETD. SDs with amorphous carriers (HPMC, PVP, and PVP/VA) provided greater ETD solubility than dispersions with crystalline features (urea and mannitol). FTIR spectra confirmed the compatibility of ETD with tested carriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355714 | PMC |
http://dx.doi.org/10.3390/ma17163923 | DOI Listing |
Sci Rep
December 2024
Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Microplastic is one of the most important environmental challenges of recent decades. Although the abundance of microplastics in water sources and water bodies such as the marine were investigated in many studies, knowing the sources of microplastics requires more studies. In this study, litter was investigated as one of the challenges of urban management and the sources of primary microplastic and secondary microplastic in the urban environment.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.
The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Analytical & Testing Center, Chengdu, 610064, China.
Aqueous-phase phosphors are of utmost importance for a myriad of applications. However, the emission wavelengths of the current aqueous organic room-temperature phosphorescent (RTP) materials are limited to green and red bands, while the blue part is rarely reported, thus limiting the development of a full-color RTP system. Theoretically, carboxylated benzene is expected to be blue phosphorescence-emissive, but only green phosphorescence is observed in solid, due to the strong intermolecular π-π stacking that decreases the energy gap.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Physics, RTM Nagpur University, Nagpur 440033, India.
While searching for a new host suitable for near infrared (NIR) emission, we explored a new composition NaLaMgWO. The samples were prepared by solid state reaction method. X-ray Diffraction confirms crystallization of NaLaMgWO in monoclinic system.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!