A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polyurethane Nanocomposite Coatings Coupled with Titanium-Based Conversion Layers for Enhanced Anticorrosion, Icephobic Properties, and Surface Protection. | LitMetric

Polyurethane Nanocomposite Coatings Coupled with Titanium-Based Conversion Layers for Enhanced Anticorrosion, Icephobic Properties, and Surface Protection.

Molecules

Department of Applied Sciences, University of Québec in Chicoutimi (UQAC), 555, Boul. de l'Université, Chicoutimi, QC G7H 2B1, Canada.

Published: August 2024

This study examines the efficacy of icephobic polyurethane nanocomposite coatings in mitigating corrosion on an aluminum substrate. A titanium-based conversion coating is applied to modify the substrate, and the research focuses on optimizing the dual functionalities of icephobicity and anticorrosion within the polyurethane coatings while ensuring strong substrate adhesion. The coatings are formulated using fluoropolyol, isocyanate, and silica nanoparticles treated with polydimethylsiloxane. Surface properties are analyzed using contact angles, contact angle hysteresis measurements, and atomic force microscopy, and the coatings' icephobicity is evaluated through differential scanning calorimetry, freezing time delay, ice adhesion under impact and non-impact conditions, and ice accretion tests. The corrosion resistance and adhesive strength of the coatings are assessed using electrochemical impedance spectroscopy and cross-cut tests, respectively. Increasing the concentration of silica nanoparticles to 10 wt.% increases contact angles to 167°, although the 4 wt.% coating produces the lowest contact angle hysteresis (3° ± 0.5°) and ice nucleation temperature (-23 °C). The latter coating is then applied to a substrate pretreated with a titanium/cerium-based conversion coating. This prepared surface maintains an ice adhesion of about 15 kPa after 15 icing/de-icing cycles and provides approximately 90 days of surface protection (|Z| = 1.6 × 10 Ω·cm). Notably, the impedance value exceeds that of untreated substrates, underscoring the effectiveness of the titanium/cerium-based conversion coating in enhancing both corrosion resistance and coating adhesion to the substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357220PMC
http://dx.doi.org/10.3390/molecules29163901DOI Listing

Publication Analysis

Top Keywords

conversion coating
12
polyurethane nanocomposite
8
nanocomposite coatings
8
titanium-based conversion
8
surface protection
8
coating applied
8
silica nanoparticles
8
contact angles
8
contact angle
8
angle hysteresis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!