Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Percolating composites exhibiting negative permittivity have garnered considerable attention due to their promising applications in the realm of electromagnetic shielding, innovative capacitance devices, coil-less inductors, etc. Nano carbon powder/polyvinylidene fluoride (CP/PVDF) percolating composites were fabricated that exhibit Drude-type negative-permittivity behavior upon reaching the CP percolation threshold. This phenomenon is attributed to the formation of a plasmonic state within the interconnected CP network, enabling the delocalization of electrons under the alternating electric field. Furthermore, a significant (nearly two orders of magnitude) increase in the conductivity of sample is observed at a CP content of 12.5 wt%. This abrupt change coincides with the percolation phenomenon, suggesting a transition in the conduction mechanism. To elucidate this behavior, comprehensive analyses of the phase composition, microstructure, AC conductivity, and relative permittivity were performed. Additionally, the sample containing 5 wt% CP exhibits a remarkably high permittivity of 31.5, accompanied by a relatively low dielectric loss (tanδ < 0.2). The findings expand the potential applications of PVDF, while the fabricated percolating composites hold promise for electromagnetic shielding, antennas, and other electromagnetic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357240 | PMC |
http://dx.doi.org/10.3390/molecules29163862 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!