Zirconium Phosphate-Pillared Zeolite MCM-36 for Green Production of γ-Valerolactone from Levulinic Acid via Catalytic Transfer Hydrogenation.

Molecules

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

Published: August 2024

γ-valerolactone (GVL), derived from biomass, is a crucial platform compound for biofuel synthesis and various industrial applications. Current methods for synthesizing GVL involve expensive catalysts and high-pressure hydrogen, prompting the search for greener alternatives. This study focuses on a novel zirconium phosphate (ZrP)-pillared zeolite MCM-36 derivative catalyst for converting levulinic acid (LA) to GVL using alcohol as a hydrogen source. The incorporation of ZrP significantly contributes to mesoporosity and greatly enhances the acidity of the catalysts. Additionally, we employed P MAS NMR to comprehensively investigate the influence of phosphorus species on both the acidity and the catalytic conversion of LA to GVL. By adjusting the Zr-to-P ratios, we synthesized catalysts with enhanced acidity, achieving high conversion of LA and selectivity for GVL. The catalyst exhibited high recyclability, showing only minor deactivation over the course of five cycles. Furthermore, the catalyst was successfully applied to the one-pot conversion of furfural to GVL, showcasing its versatility in biomass conversion. This study highlights the potential of the MCM-ZrP1 catalyst for sustainable biomass conversion and offers insights for future research in renewable energy technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357094PMC
http://dx.doi.org/10.3390/molecules29163779DOI Listing

Publication Analysis

Top Keywords

zeolite mcm-36
8
levulinic acid
8
biomass conversion
8
gvl
6
conversion
5
zirconium phosphate-pillared
4
phosphate-pillared zeolite
4
mcm-36 green
4
green production
4
production γ-valerolactone
4

Similar Publications

Zirconium Phosphate-Pillared Zeolite MCM-36 for Green Production of γ-Valerolactone from Levulinic Acid via Catalytic Transfer Hydrogenation.

Molecules

August 2024

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

γ-valerolactone (GVL), derived from biomass, is a crucial platform compound for biofuel synthesis and various industrial applications. Current methods for synthesizing GVL involve expensive catalysts and high-pressure hydrogen, prompting the search for greener alternatives. This study focuses on a novel zirconium phosphate (ZrP)-pillared zeolite MCM-36 derivative catalyst for converting levulinic acid (LA) to GVL using alcohol as a hydrogen source.

View Article and Find Full Text PDF

Zeolite-based chiral ion-exchangers for chromatographic enantioseparations and potential applications in membrane separation processes.

Talanta

October 2024

Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135, 165 00, Prague 6, Czech Republic. Electronic address:

Chiral resolution of racemic compounds represents an important task in research and development and, most importantly, in the large-scale production of pharmaceuticals. Zeolites, which are already frequently utilized for their unique properties, represent materials that can be used for the development of new chiral stationary phases for liquid chromatography, simulated moving bed or enantioselective membranes. The aim of this study was to modify a series of MWW zeolites by a chiral anion-exchange type selector thereby creating a chiral stationary phase for enantiomeric resolution of acidic compounds.

View Article and Find Full Text PDF

Two series of MCM-36 zeolites intercalated with various pillars and modified with iron were synthesized, analyzed with respect to their physicochemical properties, and tested as catalysts for the NH-SCR process. It was found that the characteristic MWW morphology of MCM-36 can be obtained successfully using silica, alumina, and iron oxide as pillars. Additionally, one-pot synthesis of the material with iron resulted in the incorporation of monomeric Fe species into the framework positions.

View Article and Find Full Text PDF

The application of layered zeolites of MWW topology in environmental catalysis has attracted growing attention in recent years; however, only a few studies have explored their performance in selective catalytic reduction with ammonia (NH-SCR). Thus, our work describes, for the first time, the one-pot synthesis of Fe-modified NH-SCR catalysts supported on MCM-22, MCM-36, and ITQ-2. The calculated chemical composition of the materials was Si/Al of 30 and 5 wt.

View Article and Find Full Text PDF

Activity of gold supported catalysts strongly depends on the type and composition of support, which determine the size of Au nanoparticles (Au NPs), gold-support interaction influencing gold properties, interaction with the reactants and, in this way, the reaction pathway. The aim of this study was to use two types of zeolites: the three dimensional HBeta and the layered two-dimensional MCM-36 as supports for gold, and modification of their properties towards the achievement of different properties in oxidation of glucose to gluconic acid with molecular oxygen and hydrogen peroxide. Such an approach allowed establishment of relationships between the activity of gold catalysts and different parameters such as Au NPs size, electronic properties of gold, structure and acidity of the supports.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!