Ischemic heart disease, manifesting as myocardial infarction (MI), remains the leading cause of death in the western world. Both ischemia and reperfusion (I/R) cause myocardial injury and result in cardiac inflammatory responses. This sterile inflammation in the myocardium consists of multiple phases, involving cell death, tissue remodeling, healing, and scar formation, modulated by various cytokines, including the macrophage migration inhibitory factor (MIF). Meanwhile, different immune cells participate in these phases, with myeloid cells acting as first responders. They migrate to the injured myocardium and regulate the initial phase of inflammation. The MIF modulates the acute inflammatory response by affecting the metabolic profile and activity of myeloid cells. This review summarizes the role of the MIF in regulating myeloid cell subsets in MI and I/R injury and discusses emerging evidence of metabolism-directed cellular inflammatory responses. Based on the multifaceted role of the MIF affecting myeloid cells in MI or I/R, the MIF can be a therapeutic target to achieve metabolic balance under pathology and alleviate inflammation in the heart.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355293 | PMC |
http://dx.doi.org/10.3390/life14080981 | DOI Listing |
Ann Med
December 2025
School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.
Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs).
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
Background: Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous make-up of myeloid cells that influences the therapeutic response and prognosis. However, understanding the myeloid cell at both a genetic and cellular level remains a significant challenge.
Methods: Single-cell RNA sequencing (scRNA-seq) data were downloaded from t the Tumor Immune Single-cell Hub and gene expression data were retrieved from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database.
Oral Dis
January 2025
Bahrain Defence Force Royal Medical Services, Riffa, Bahrain.
Objective: Tumour-associated macrophages (TAMs) are crucial in the progression and treatment response of oral squamous cell carcinoma (OSCC). TAMs infiltrate OSCC, adopting an M2-like phenotype that promotes tumour growth, metastasis and immune suppression. The current narrative review explored the roles of TAMs in OSCC, focusing on their impact on the tumour microenvironment, invasion, metastasis, angiogenesis, immunosuppression and potential therapeutic targeting.
View Article and Find Full Text PDFJCI Insight
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China.
Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!