This study advances the field of infectious disease forecasting by introducing a novel approach to micro-level contact modeling, leveraging human movement patterns to generate realistic temporal-dynamic networks. Through the incorporation of human mobility models and parameter tuning, this research presents an innovative method for simulating micro-level encounters that closely mirror infection dynamics within confined spaces. Central to our methodology is the application of Bayesian optimization for parameter selection, which refines our models to emulate both the properties of real-world infection curves and the characteristics of network properties. Typically, large-scale epidemiological simulations overlook the specifics of human mobility within confined spaces or rely on overly simplistic models. By focusing on the distinct aspects of infection propagation within specific locations, our approach strengthens the realism of such pandemic simulations. The resulting models shed light on the role of spatial encounters in disease spread and improve the capability to forecast and respond to infectious disease outbreaks. This work not only contributes to the scientific understanding of micro-level transmission patterns but also offers a new perspective on temporal network generation for epidemiological modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487436 | PMC |
http://dx.doi.org/10.3390/e26080703 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of Gas and Fire Control for Mines, Ministry of Education, Xuzhou, 221116, China.
Confined space fires could easily cause serious casualties and property damage, and foam is an effective means of preventing confined space fires. The existing foam generator does not have both momentum and foam expansion rate (FER) and is poorly suited to confined spaces. In order to develop a foam generator suitable for confined space fire protection, an in-depth analysis of the physical foaming characteristics of self-suction foam is required, and the structure of the foam generator is optimized accordingly.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic.
Bacterial biofilms are complex multicellular communities that adhere firmly to solid surfaces. They are widely recognized as major threats to human health, contributing to issues such as persistent infections on medical implants and severe contamination in drinking water systems. As a potential treatment for biofilms, this work proposes two strategies: (i) light-driven ZnFeO (ZFO)/Pt microrobots for photodegradation of biofilms and (ii) magnetically driven ZFO microrobots for mechanical removal of biofilms from surfaces.
View Article and Find Full Text PDFNeurol Int
December 2024
Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy.
Background: Post-traumatic pseudomeningoceles are common findings after a brachial or lumbar plexus trauma, in particular after nerve root avulsion. Unlike meningoceles, pseudomeningoceles are CSF full-filled cysts confined by the paraspinous soft tissue, along the normal nerve course, in communication with the spinal subarachnoid spaces. Normally no more than a radiological finding at MRI, in rare instances they might be symptomatic due to their size or might constitute an obstacle during a reconstructive surgery.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China.
Crystalline membranes, represented by the metal-organic framework (MOF) with well-defined angstrom-sized apertures, have shown great potential for molecular separation. Nevertheless, it remains a challenge to separate small molecules with very similar molecular size differences due to angstrom-scale defects during membrane formation. Herein, a stepwise assembling strategy is reported for constructing MOF membranes with intrinsic angstrom-sized lattice aperture lattice to separate organic azeotropic mixtures separation.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Computer Science and Technology, Henan Institute of Science and Technology, Xinxiang, China.
Introduction: Detecting strawberry growth stages is crucial for optimizing production management. Precise monitoring enables farmers to adjust management strategies based on the specific growth needs of strawberries, thereby improving yield and quality. However, dense planting patterns and complex environments within greenhouses present challenges for accurately detecting growth stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!