Possibilistic fuzzy c-means (PFCM) clustering is a kind of hybrid clustering method based on fuzzy c-means (FCM) and possibilistic c-means (PCM), which not only has the stability of FCM but also partly inherits the robustness of PCM. However, as an extension of FCM on the objective function, PFCM tends to find a suboptimal local minimum, which affects its performance. In this paper, we rederive PFCM using the majorization-minimization (MM) method, which is a new derivation approach not seen in other studies. In addition, we propose an effective optimization method to solve the above problem, called MMPFCM. Firstly, by eliminating the variable V∈Rp×c, the original optimization problem is transformed into a simplified model with fewer variables but a proportional term. Therefore, we introduce a new intermediate variable s∈Rc to convert the model with the proportional term into an easily solvable equivalent form. Subsequently, we design an iterative sub-problem using the MM method. The complexity analysis indicates that MMPFCM and PFCM share the same computational complexity. However, MMPFCM requires less memory per iteration. Extensive experiments, including objective function value comparison and clustering performance comparison, demonstrate that MMPFCM converges to a better local minimum compared to PFCM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353294 | PMC |
http://dx.doi.org/10.3390/e26080670 | DOI Listing |
MethodsX
June 2025
Department of Biological and Pharmaceutical Environmental Sciences and Technologies, University of Campania "L. Vanvitelli", Via Antonio Vivaldi, 43, Caserta 81100, CE, Italy.
This study explores the application of fuzzy soft classification techniques combined with vegetation indices to address spectral overlap and heterogeneity in agricultural image processing. The methodology focuses on the integration of three key vegetation indices: Soil-Adjusted Vegetation Index (SAVI), Modified Soil-Adjusted Vegetation Index (MSAVI), and Modified Chlorophyll Absorption in Reflectance Index (MCARI), with Modified Possibilistic C-Means (MPCM) clustering. The analysis involves preprocessing the image data, calculating the vegetation indices, and applying the MPCM algorithm to perform soft classification, allowing pixels to belong to multiple classes with varying degrees of membership.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ocean and Meteorology & South China Sea Institute of Marine Meteorology, Guangdong Ocean University, 524088, Zhanjiang, Guangdong, China.
Accurate classification of tropical cyclone (TC) tracks is essential for evaluating and mitigating the potential disaster risks associated with TCs. In this study, three commonly used methods (K-means, Fuzzy C-Means, and Self-Organizing Maps) are assessed for clustering historical TC tracks that originated in the South China Sea from 1949 to 2023. The results show that the K-means method performs the best, while the Fuzzy C-Means and Self-Organizing Maps methods are also viable alternatives.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Information Technology Management, Faculty of Management Technology and Information System, Port Said University, Port Said, 42526, Egypt.
The Internet of Things (IoTs) has revolutionized cities, enabling them to become smarter. IoTs play an important role in monitoring the traffic cameras, roads, smart farming, connected vehicles, air quality, water level, humidity, and carbon dioxide pollution levels in city buildings. One of the major challenges of smart cities is the cyber threat to sensitive data.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, 110016, Liaoning, China.
Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input.
View Article and Find Full Text PDFJ Imaging Inform Med
December 2024
Department of Computer Science and Engineering, College of Engineering, Anna University, Guindy, Chennai, Tamilnadu, India.
Spatial regions within images typically hold greater priority over adjacent areas, especially in the context of medical images (MI) where minute details can have significant clinical implications. This research addresses the challenge of compressing medical image dimensions without compromising critical information by proposing an adaptive compression algorithm. The algorithm integrates a modified image enhancement module, clustering-based segmentation, and a variety of lossless and lossy compression techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!