Diabetic retinopathy is a leading cause of visual morbidity worldwide. Fundus autofluorescence is a rapid, non-invasive imaging modality that has gained increased popularity in recent years in the multimodal evaluation of diabetic retinopathy and, in particular, of diabetic macular oedema. Acquired using either a fundus camera or the confocal scanning laser ophthalmoscope, short-wavelength and near-infrared autofluorescence are the most used techniques in diabetic retinopathy. In diabetic macular oedema, short-wavelength autofluorescence, in its cystoid pattern, is useful for detecting cystoid macular oedema. Increased spot hyperautofluorescence in short-wavelength and granular changes in near-infrared autofluorescence correlate well with other imaging findings, indicating photoreceptor and retinal pigment epithelium damage and being associated with decreased visual acuity. While also being a marker of oxidative stress, increased short-wavelength autofluorescence in the setting of diabetic macular oedema appears to be a prognostic factor for poor visual outcome, even after the resolution of the intraretinal fluid. Autofluorescence also helps in the assessment of diabetic retinal pigment epitheliopathy and choroidopathy. Fundus autofluorescence is an evolving technology that will assist in gaining further insight into the pathophysiology of diabetic retinopathy and allow for a more comprehensive evaluation of these patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355256 | PMC |
http://dx.doi.org/10.3390/jpm14080793 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!