Sugar beet is a significant sugar crop in China, primarily cultivated in arid regions of the north. However, drought often affects sugar beet cultivation, leading to reduced yield and quality. Therefore, understanding the impact of drought on sugar beets and studying their drought tolerance is crucial. Previous research has examined the role of SPL ( promoter-binding protein-like) transcription factors in plant stress response; however, the precise contribution of SPLs to the drought stress response in sugar beets has yet to be elucidated. In this study, we identified and examined the , , and genes in sugar beets, investigating their performance during the seedling stage under drought stress. We explored their drought resistance characteristics using bioinformatics, quantitative analysis, physiological experiments, and molecular biology experiments. Drought stress and rehydration treatments were applied to sugar beet seedlings, and the expression levels of , , and genes in leaves were quantitatively analyzed at 11 different time points to evaluate sugar beets' response and tolerance to drought stress. Results indicated that the expression level of the genes in leaves was upregulated during the mid-stage of drought stress and downregulated during the early and late stages. Additionally, the expression level of the gene gradually increased with the duration of drought stress. Through analyzing changes in physiological indicators during different time periods of drought stress and rehydration treatment, we speculated that the regulation of genes is associated with sugar beet drought resistance and their participation in drought stress response. Furthermore, we cloned the CDS sequences of , , and genes from sugar beets and conducted sequence alignment with the database to validate the results. Subsequently, we constructed overexpression vectors, named 35S::, 35S::, and 35S::, and introduced them into sugar beets using -mediated methods. Real-time fluorescence quantitative analysis revealed that the expression levels of /7/ genes in transgenic sugar beets increased by 40% to 80%. The drought resistance of transgenic sugar beets was significantly enhanced compared with the control group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11354545 | PMC |
http://dx.doi.org/10.3390/ijms25168989 | DOI Listing |
PLoS Genet
January 2025
Génétique Quantitative et Evolution - Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments.
View Article and Find Full Text PDFPlant Cell
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
Drought stress substantially decreases crop yields by causing flowers and fruits to detach prematurely. However, the molecular mechanisms modulating organ abscission under drought stress remain unclear. Here, we show that expression of CALMODULIN2 (CaM2) is specifically and sharply increased in the pedicel abscission zone (AZ) in response to drought and plays a positive role in drought-induced flower drop in tomato (Solanum lycopersicum).
View Article and Find Full Text PDFAnthropogenically induced climate change has significantly increased the frequency of acute weather events, such as drought. As human activities amplify environmental stresses, animals may be forced to prioritize survival over behaviors less crucial to immediate fitness, such as socializing. Yet, social bonds may also enable individuals to weather the deleterious effects of environmental conditions.
View Article and Find Full Text PDFSci Rep
January 2025
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:
Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!