AI Article Synopsis

  • - Muscle disorders caused by tendon issues lead to reduced muscle function and atrophy, and Pulsed Electromagnetic Fields (PEMFs) may help improve tendon structure and muscle recovery.
  • - A study on rats with induced Achilles tendinopathy showed that PEMF therapy resulted in significant metabolic changes, improving NAD signaling, ATP production, and enhancing the function of proteins related to muscle recovery.
  • - The research demonstrated that PEMF treatment not only increased antioxidant protein levels but also restored important signaling proteins like PGC1alpha and YAP, and upregulated slow myosin isoforms, facilitating faster physiological recovery of muscle tissue.

Article Abstract

Tendon disorders often result in decreased muscle function and atrophy. Pulsed Electromagnetic Fields (PEMFs) have shown potential in improving tendon fiber structure and muscle recovery. However, the molecular effects of PEMF therapy on skeletal muscle, beyond conventional metrics like MRI or markers of muscle decline, remain largely unexplored. This study investigates the metabolic and structural changes in PEMF-treated muscle tissue using proteomics in a rat model of Achilles tendinopathy induced by collagenase. Sprague Dawley rats were unilaterally induced for tendinopathy with type I collagenase injection and exposed to PEMFs for 8 h/day. extracts from untreated or PEMF-treated rats were analyzed with LC-MS/MS, and proteomics differential analysis was conducted through label-free quantitation. PEMF-treated animals exhibited decreased glycolysis and increased LDHB expression, enhancing NAD signaling and ATP production, which boosted respiratory chain activity and fatty acid beta-oxidation. Antioxidant protein levels increased, controlling ROS production. PEMF therapy restored PGC1alpha and YAP levels, decreased by tendinopathy. Additionally, myosins regulating slow-twitch fibers and proteins involved in fiber alignment and force transmission increased, supporting muscle recovery and contractile function. Our findings show that PEMF treatment modulates NAD signaling and oxidative phosphorylation, aiding muscle recovery through the upregulation of YAP and PGC1alpha and increasing slow myosin isoforms, thus speeding up physiological recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11354614PMC
http://dx.doi.org/10.3390/ijms25168852DOI Listing

Publication Analysis

Top Keywords

muscle recovery
12
pulsed electromagnetic
8
muscle
8
skeletal muscle
8
muscle tissue
8
rat model
8
pemf therapy
8
nad signaling
8
recovery
5
effects pulsed
4

Similar Publications

Probing regional glycogen metabolism in humans non-invasively has been challenging due to a lack of sensitive approaches. Here we studied human muscle glycogen dynamics post-exercise with a spatial resolution of millimeters and temporal resolution of minutes, using relayed nuclear Overhauser effect (glycoNOE) MRI. Data at 5T showed a homogeneous distribution of glycogen in resting muscle, with an average concentration of 99 ± 13 mM.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise.

Clin Physiol Funct Imaging

January 2025

Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey.

Background: Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS.

View Article and Find Full Text PDF

Structural remodeling of the brain cortex and functional recovery following hypoglossal-facial neurorrhaphy in patients with facial paralysis.

Brain Res

December 2024

Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 10070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; U1195, Inserm et Universite Paris-Saclay, 94276 Le Kremlin-Bicetre, France. Electronic address:

Objective: Peripheral nerve injury results in functional alterations of the corresponding active brain areas, which are closely related to functional recovery. Whether such functional plasticity induces relative anatomical structural changes remains to be investigated.

Methods: In this study, we investigated the changes in brain cortical thickness in patients with facial paralysis following neurorrhaphy treatment at different follow-up times.

View Article and Find Full Text PDF

Femoral nerve palsy (FNP) is a rare but serious complication after total hip replacement (THP). Despite its rarity, FNP can significantly impact patient recovery and quality of life. This case report examines the occurrence of FNP in a patient following a primary THP and highlights the importance of surgical technique and postoperative detection and its management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!