Exploring the Impact of Fermentation Time and Climate on Quality of Cocoa Bean-Derived Chocolate: Sensorial Profile and Volatilome Analysis.

Foods

Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad-Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia.

Published: August 2024

The market for fine-flavor cocoa provides significant benefits to farmers. However, identifying the sensory qualities of chocolate under specific environmental conditions and measuring how its chemical compounds may be affected by climate differences and postharvesting practices remain a challenge. This study investigates how fermentation time and agroclimatic conditions in Colombia's fine cocoa-producing region of Arauca influence the sensory profile and volatile compound composition (volatilome) of chocolate derived from cocoa beans. Sensory evaluation was conducted on chocolates fermented for 48, 72, 96, and 120 h, revealing that fermentation time critically affects the development of fine-flavor attributes, particularly fruitiness and nuttiness. The optimal fermentation period to enhance these attributes was identified at 96 h, a duration consistently associated with peak fruitiness under all studied climatic conditions. Analysis of 44 volatile compounds identified several key aroma markers, such as acetoin, 1-methoxy-2-propyl acetate, and various pyrazines, which correlate with desirable sensory attributes. These compounds exhibited varying amounts depending on fermentation time and specific agroclimatic conditions, with a 96 h fermentation yielding chocolates with a higher quantity of volatile compounds associated with preferred attributes. Our findings highlight the complex interaction between fermentation processes and agroclimatic factors in determining cocoa quality, providing new insights into optimizing the flavor profiles of chocolate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353615PMC
http://dx.doi.org/10.3390/foods13162614DOI Listing

Publication Analysis

Top Keywords

fermentation time
16
agroclimatic conditions
8
volatile compounds
8
fermentation
7
exploring impact
4
impact fermentation
4
time
4
time climate
4
climate quality
4
cocoa
4

Similar Publications

Latilactobacillus curvatus, found in various fermented foods, is a promising probiotic with unique health benefits. Lipoteichoic acid (LTA) is a characteristic amphiphilic surface polymer of gram-positive bacteria and exhibits immunomodulatory activities. Despite the structural diversity of LTA among different bacterial species and strains, no information is available on the chemical structure of LTA in L.

View Article and Find Full Text PDF

Sourdough bread consumption has been associated with improved glucose and appetite regulation thanks to the presence of organic acids produced during fermentation of the flour-water mixture. We investigated the effects of whole meal sourdough bread (WSB) rich in lactic acid on energy intake, satiety, gastric emptying, glucose, and C-peptide response compared to whole meal yeast bread (WYB). Forty-four normal-weight participants (age: 30 ± 10 y; BMI: 23 ± 2 kg/m) participated in this double-blind, randomized cross-over trial, consisting of two study visits separated by one week.

View Article and Find Full Text PDF

Tracing the change of the volatile compounds of soy sauce at different fermentation times by PTR-TOF-MS, -nose and GC-MS.

Food Chem X

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.

Proton-transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), combined with electronic nose (-nose), was first used to track the change of volatile organic compounds (VOCs) in soy sauce in this study. The results showed that 163 VOCs with different mass numbers were identified. Based on the differences in VOCs, the entire fermentation cycle was divided into four stages (0D and 15D; 30D-75D; 90D; 105D-120D).

View Article and Find Full Text PDF

is a microorganism for production of 1,3-propanediol (1,3-PDO) and butanol, but suffers from lacking genetic tools for metabolic engineering to improve product titers. Furthermore, previous studies of have mainly focused on single genomic modification. The aim of this work is the development and application of a method for modification of multiple gene targets in the genome of .

View Article and Find Full Text PDF

In this research article, response surface methodology (RSM) based optimization of three production parameters namely temperature, time and amount of starter culture of Vechur cow milk yoghurt (VCMY) on the basis of sensory evaluation responses comparing cross-bred cow milk yoghurt (CCMY) as the control is reported. The optimized values of production parameters were 2.15 per cent rate of inoculation, 42°C incubation temperature and 4 h incubation period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!