Lentils are marketed as dry seeds, fresh sprouts, flours, protein isolates, and concentrates used as ingredients in many traditional and innovative food products, including dairy and meat analogs. Appreciated for their nutritional and health benefits, lentil ingredients and food products may be affected by off-flavor notes described as "beany", "green", and "grassy", which can limit consumer acceptance. This narrative review delves into the volatile profiles of lentil ingredients and possible de-flavoring strategies, focusing on their effectiveness. Assuming that appropriate storage and processing are conducted, so as to prevent or limit undesired oxidative phenomena, several treatments are available: thermal (pre-cooking, roasting, and drying), non-thermal (high-pressure processing, alcohol washing, pH variation, and addition of adsorbents), and biotechnological (germination and fermentation), all of which are able to reduce the beany flavor. It appears that lentil is less studied than other legumes and more research should be conducted. Innovative technologies with great potential, such as high-pressure processing or the use of adsorbents, have been not been explored in detail or are still totally unexplored for lentil. In parallel, the development of lentil varieties with a low LOX and lipid content, as is currently in progress for soybean and pea, would significantly reduce off-flavor notes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353891PMC
http://dx.doi.org/10.3390/foods13162608DOI Listing

Publication Analysis

Top Keywords

volatile profiles
8
de-flavoring strategies
8
food products
8
lentil ingredients
8
off-flavor notes
8
high-pressure processing
8
lentil
5
exploring volatile
4
profiles de-flavoring
4
strategies enhanced
4

Similar Publications

Emission rates for volatile organic compounds (VOCs) have been quantified from frying, spice and herb cooking, and cooking a chicken curry, using real-time selected-ion flow-tube mass spectrometry (SIFT-MS) for controlled, laboratory-based experiments in a semi-realistic kitchen. Emissions from 7 different cooking oils were investigated during the frying of wheat flatbread (puri). These emissions were dominated by ethanol, octane, nonane and a variety of aldehydes, including acetaldehyde, heptenal and hexanal, and the average concentration of acetaldehyde (0.

View Article and Find Full Text PDF

Association between gut microbiota and short-chain fatty acids in children with obesity.

Sci Rep

January 2025

Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China.

The gut microbiome and its metabolites may be important role in regulating the pathogenesis of obesity. This study aimed to characterize the gut microbiome and short-chain fatty acid (SCFA) metabolome in obese children. This case-control study recruited children aged 7‒14 years and divided them into a normal group (NG) and an obese group (OG) based on their body mass index.

View Article and Find Full Text PDF

Chronic hypertension is an increasingly prevalent condition that constitutes a risk factor for superimposed preeclampsia during pregnancy. In this study, we assessed the gut microbiome in a rat model of superimposed preeclampsia to characterize the microbial signature associated with defective placentation processes identified at the preclinical disease stage. The blood pressure profile, renal function parameters and fetal phenotype were evaluated in pregnant Stroke-prone Spontaneously Hypertensive Rats (SHRSP) and their normotensive controls.

View Article and Find Full Text PDF

Pine needle, pine bark, and soil samples were collected from various regions in South Korea, considering the suitability of vegetation samples as passive samplers. A total of 27 organochlorine pesticides (OCPs) were analyzed using a gas chromatograph/high-resolution mass spectrometer (GC/HRMS). The total concentrations of OCPs ranged between 650 and 3652 pg/g dw in soil, 215 and 1384 pg/g ww in pine needles, and 456 and 1723 pg/g ww in pine bark.

View Article and Find Full Text PDF

Differential effects of Lactococcus starter cultures on Cheddar cheese: Insights from texture, electronic sensory, and metabolomics analyses.

Food Chem

December 2024

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China. Electronic address:

Cheese-associated microbiota and their interactions are crucial in determining the properties of cheese. This study aimed to compare the effects of different starter cultures on Cheddar cheese production using texture analysis, electronic sensory evaluation, and both volatile and non-volatile metabolomics. Specifically, we examined Lactococcus lactis BL19 and Lactococcus cremoris LC99, both individually and in combination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!