Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To further develop Liupao tea products and enhance their flavor, this study investigated the effects of different fermentation methods on the aroma quality of Liupao tea. The aroma quality of Liupao tea was comprehensively analyzed using HS-SPME in combination with GC-Q-TOF-MS, electronic nose, and sensory evaluations. Electronic nose detection showed that the aroma fingerprints of Liupao tea samples with different fermentation methods were different. Sulfides, alcohols, ketones, and methyls were the main aroma categories affecting the aroma of the four groups of Liupao tea samples. GC-Q-TOF-MS analysis revealed significant differences in the composition of aroma components among the four fermentation methods of Liupao tea ( < 0.05). Furthermore, the total amount of aroma compounds was found to be highest in the group subjected to hot fermentation combined with the inoculation of (DMl group). Based on the OPLS-DA model, candidate differential aroma components with VIP > 1 were identified, and characteristic aroma compounds were selected based on OAV > 10. The key characteristic aroma compounds shared by the four groups of samples were 1,2,3-Trimethoxybenzene with a stale aroma and nonanal with floral and fruity aromas. The best sensory evaluation results were obtained for the DMl group, and its key characteristic aroma compounds mainly included 1,2,3-Trimethoxybenzene, nonanal, and cedrol. The results of this study can guide the development of Liupao tea products and process optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353607 | PMC |
http://dx.doi.org/10.3390/foods13162595 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!