Sodium butyrate (NaB) and sodium propionate (NaP) have recently garnered attention for their role in regulating inflammation and controlling signaling pathways of cell growth and apoptosis, potentially preventing cancer development. However, their therapeutic effect and the underlying mechanisms involved remain elusive in breast cancer. This study aims at investigating the anticancer role of NaB and NaP in different types of breast cancer by assessing their antiproliferative effect on MCF-7 and MDA-MB-231 cells (through an MTT assay), as well as their ability to alter the cell cycle and cyclin expression (using flow cytometry and RT-qPCR, respectively), and to promote apoptosis (using Annexin V-FITC conjugated and sub-G1 phase techniques). MDA-MB-231 cell proliferation was inhibited by NaB and NaP in a dose- and time-dependent manner with respective IC values of 2.56 mM and 6.49 mM. Treatment induced cell arrest in the G1 phase which was further supported by the significant reduction in cyclin A2 and cyclin B1 expressions. Finally, NaB, and less significantly NaP, induced apoptosis in a dose-dependent manner with higher concentrations required for MDA-MB-231 than MCF-7. Our findings elucidate the cyclin-dependent inhibitory effect of NaB and NaP on the progression of different breast cancer subtypes, thus highlighting their therapeutic potential in breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351769 | PMC |
http://dx.doi.org/10.3390/biomedicines12081779 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!