Background: Cardiovascular diseases, particularly myocardial ischemia from coronary artery obstruction, remain a leading cause of global morbidity. This review explores cardiac molecular magnetic resonance imaging (mMRI) and other molecular imaging techniques for the evaluation of myocardial ischemia, scarring, and viability.
Results And Findings: mMRI imaging methods provide detailed information on myocardial ischemia, edema, and scar tissue using techniques like cine imaging, T1 and T2 mapping, and gadolinium-based contrast agents. These methods enable the precise assessment of the myocardial tissue properties, crucial in diagnosing and treating cardiovascular diseases. Advanced techniques, such as the T1ρ and RAFFn methods, might provide enhanced contrast and sensitivity for the detection of myocardial scarring without contrast agents. Molecular probes, including gadolinium-based and protein-targeted contrast agents, improve the detection of molecular changes, facilitating early diagnosis and personalized treatment. Integrating MRI with positron emission tomography (PET) combines the high spatial and temporal resolution with molecular and functional imaging.
Conclusion: Recent advancements in mMRI and molecular imaging have changed the evaluation of myocardial ischemia, scarring, and viability. Despite significant progress, extensive research is needed to validate these techniques clinically and further develop imaging methods for better diagnostic and prognostic outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351116 | PMC |
http://dx.doi.org/10.3390/biomedicines12081681 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!