is an emerging pathogen that poses a significant challenge due to its multidrug-resistant nature. There are two types of antifungal agents, fungicidal and fungistatic, with distinct mechanisms of action against fungal pathogens. Fungicidal agents kill fungal pathogens, whereas fungistatic agents inhibit their growth. The growth can be restored once the agent is removed and favorable conditions are established. Recognizing this difference is crucial as it influences treatment selection and infection prognosis. We present a technique based on optical nanomotion detection (ONMD) (i.e., observing the movement of the cells using an optical microscope) to discriminate rapidly between fungicidal (caspofungin) and fungistatic (fluconazole) drugs. The technique is based on the change in a yeast cell's nanomotion as a function of time during a two-hour treatment with the antifungal of interest followed by a one-hour growth period. The cells are entrapped in microwells in a microfluidic chip, which allows a quick exchange of growth medium and antifungal agent, enabling ONMD measurements on the same individual cells before and after treatment. This procedure permits to discriminate between fungicidal and fungistatic antifungals in less than 3 h, with single-cell resolution by observing if the nanomotion recovers after removing the treatment and reintroducing growth medium (YPD), or continues to drop. The simplicity of the approach holds promise for further development into a user-friendly device for rapid antifungal susceptibility testing (AFST), potentially being implemented in hospitals and medical centers worldwide in developed and developing countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350713PMC
http://dx.doi.org/10.3390/antibiotics13080712DOI Listing

Publication Analysis

Top Keywords

fungicidal fungistatic
12
optical nanomotion
8
nanomotion detection
8
discriminate fungicidal
8
antifungals single-cell
8
fungal pathogens
8
technique based
8
growth medium
8
fungicidal
5
fungistatic
5

Similar Publications

Antifungal Effect of Cinnamon Bark Extract on the Phytopathogenic Fungus .

Food Technol Biotechnol

December 2024

University of Zagreb Faculty of Agriculture, Division of Phytomedicine, Department of Plant Pathology, Svetošimunska 25, 10000 Zagreb, Croatia.

Research Background: The use of plant extracts in the biological control of fungal plant diseases can reduce the use of fungicides and residues in food by effectively suppressing mycotoxigenic microorganisms. The focus of interest is therefore finding plant extracts that have antifungal properties and are not toxic to organisms, so that they can be used for the biological control of economically important phytopathogenic fungi such as . Species of the genus are considered economically important pathogenic fungi of numerous agricultural crops, which not only cause significant losses but also produce mycotoxins that reach consumers through food.

View Article and Find Full Text PDF

Introduction: Ethnomedicinal plants in Asia offer a promising, low-side-effect alternative to synthetic drugs for treating fungal infections, one of the most widespread communicable diseases caused by pathogenic fungi. Despite being underexplored, the region's rich plant diversity holds the potential for developing effective antifungal drugs. Research is increasingly focused on bioactive compounds from these plants, which show strong antifungal properties and may serve as leads for new drug development.

View Article and Find Full Text PDF

Use of dielectric-barrier discharge (DBD) cold plasma for control of bread spoilage fungi.

Int J Food Microbiol

December 2024

Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil. Electronic address:

Bread is a greatly consumed bakery product worldwide. Unfortunately, it is an optimal substrate for fungal contamination and deterioration (aw > 0.95), commonly caused by the genera Penicillium, Paecilomyces, and Aspergillus, resulting in significant economic losses.

View Article and Find Full Text PDF

Antifungal Properties of Polycephalomyces nipponicus (Ascomycetes) against Candida albicans: Potential for Novel Therapeutic Development.

Int J Med Mushrooms

December 2024

Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand; Microbiology and Applied Microbiology Research Unit, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand.

Candida albicans has the potential to turn pathogenic and cause mild to severe infections, particularly in people with weakened immune systems. Novel therapeutics are required due to its morphological alterations, biofilm development, and resistance to antifungal drugs. Polycephalomyces nipponicus, a traditional East Asian medicinal fungus, has shown potential as an antifungal agent.

View Article and Find Full Text PDF

Candidiasis is an infectious disease caused by some fungi of the genus Candida. In Brazil, the incidence rate is higher than in European countries and the United States, and health problems occur mainly due to the virulence factors of the fungi, which have made treatment with commercial drugs difficult. Considering the context, plants rich in phenolic compounds, such as those of the genus Piper, have been studied due to their antimicrobial properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!