A new accessory was developed to allow implantation of left ventricular assist devices (LVADs) without requiring an anastomosis to the ascending aorta. The accessory combines the LVAD inflow and outflow into a dual-lumen device. Initial prototypes encountered reduced pump performance in vitro, but a second-generation prototype successfully addressed this issue. This feasibility study aimed to demonstrate the anatomic fit, safe implantation, and hemodynamic effectiveness of the LVAD with the accessory. The accessory was implanted in ten female pigs (104 ± 13 kg). Following sternotomy and apical coring under cardiopulmonary bypass, a balloon catheter was retrogradely inserted and exteriorized through the coring site, where it was inflated within the distal third of the outflow graft. It was utilized to pull the accessory's outflow across the aortic valve. After LVAD attachment, the catheter was removed. Echocardiography revealed no relevant valve regurgitation post-implantation. During ramp testing, pump flow increased from 3.7 ± 1.2 to 5.4 ± 1.2 L/min. Necropsy confirmed correct accessory placement in nine animals. No valve lesions or device thrombosis were observed. The accessory enabled LVAD implantation without compromising pump performance. Future work includes design refinements for implantation without cardiopulmonary bypass and long-term testing in a chronic heart failure model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351186PMC
http://dx.doi.org/10.3390/bioengineering11080848DOI Listing

Publication Analysis

Top Keywords

second-generation prototype
8
left ventricular
8
ventricular assist
8
pump performance
8
cardiopulmonary bypass
8
accessory
7
implantation
5
vivo testing
4
testing second-generation
4
prototype accessory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!