A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated Multi-Class Facial Syndrome Classification Using Transfer Learning Techniques. | LitMetric

Automated Multi-Class Facial Syndrome Classification Using Transfer Learning Techniques.

Bioengineering (Basel)

Department of Computer Engineering, Gachon University, Seongnam 13415, Republic of Korea.

Published: August 2024

Genetic disorders affect over 6% of the global population and pose substantial obstacles to healthcare systems. Early identification of these rare facial genetic disorders is essential for managing related medical complexities and health issues. Many people consider the existing screening techniques inadequate, often leading to a diagnosis several years after birth. This study evaluated the efficacy of deep learning-based classifier models for accurately recognizing dysmorphic characteristics using facial photos. This study proposes a multi-class facial syndrome classification framework that encompasses a unique combination of diseases not previously examined together. The study focused on distinguishing between individuals with four specific genetic disorders (Down syndrome, Noonan syndrome, Turner syndrome, and Williams syndrome) and healthy controls. We investigated how well fine-tuning a few well-known convolutional neural network (CNN)-based pre-trained models-including VGG16, ResNet-50, ResNet152, and VGG-Face-worked for the multi-class facial syndrome classification task. We obtained the most encouraging results by adjusting the VGG-Face model. The proposed fine-tuned VGG-Face model not only demonstrated the best performance in this study, but it also performed better than other state-of-the-art pre-trained CNN models for the multi-class facial syndrome classification task. The fine-tuned model achieved both accuracy and an F1-Score of 90%, indicating significant progress in accurately detecting the specified genetic disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351398PMC
http://dx.doi.org/10.3390/bioengineering11080827DOI Listing

Publication Analysis

Top Keywords

multi-class facial
16
facial syndrome
16
syndrome classification
16
genetic disorders
16
syndrome
8
classification task
8
vgg-face model
8
facial
6
automated multi-class
4
classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!