A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Effect of Aligned and Random Electrospun Fibers Derived from Porcine Decellularized ECM on Mesenchymal Stem Cell-Based Treatments for Spinal Cord Injury. | LitMetric

The Effect of Aligned and Random Electrospun Fibers Derived from Porcine Decellularized ECM on Mesenchymal Stem Cell-Based Treatments for Spinal Cord Injury.

Bioengineering (Basel)

Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Published: July 2024

The impact of traumatic spinal cord injury (SCI) can be extremely devastating, as it often results in the disruption of neural tissues, impeding the regenerative capacity of the central nervous system. However, recent research has demonstrated that mesenchymal stem cells (MSCs) possess the capacity for multi-differentiation and have a proven track record of safety in clinical applications, thus rendering them effective in facilitating the repair of spinal cord injuries. It is urgent to develop an aligned scaffold that can effectively load MSCs for promoting cell aligned proliferation and differentiation. In this study, we prepared an aligned nanofiber scaffold using the porcine decellularized spinal cord matrix (DSC) to induce MSCs differentiation for spinal cord injury. The decellularization method removed 87% of the immune components while retaining crucial proteins in DSC. The electrospinning technique was employed to fabricate an aligned nanofiber scaffold possessing biocompatibility and a diameter of 720 nm. In in vitro and in vivo experiments, the aligned nanofiber scaffold induces the aligned growth of MSCs and promotes their differentiation into neurons, leading to tissue regeneration and nerve repair after spinal cord injury. The approach exhibits promising potential for the future development of nerve regeneration scaffolds for spinal cord injury treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351159PMC
http://dx.doi.org/10.3390/bioengineering11080772DOI Listing

Publication Analysis

Top Keywords

spinal cord
28
cord injury
20
aligned nanofiber
12
nanofiber scaffold
12
porcine decellularized
8
mesenchymal stem
8
repair spinal
8
aligned
7
spinal
7
cord
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!