There has been growing scientific interest in the research field of deep learning techniques applied to skin cancer diagnosis in the last decade. Though encouraging data have been globally reported, several discrepancies have been observed in terms of study methodology, result presentations and validation in clinical settings. The present review aimed to screen the scientific literature on the application of DL techniques to dermoscopic melanoma/nevi differential diagnosis and extrapolate those original studies adequately by reporting on a DL model, comparing them among clinicians and/or another DL architecture. The second aim was to examine those studies together according to a standard set of statistical measures, and the third was to provide dermatologists with a comprehensive explanation and definition of the most used artificial intelligence (AI) terms to better/further understand the scientific literature on this topic and, in parallel, to be updated on the newest applications in the medical dermatologic field, along with a historical perspective. After screening nearly 2000 records, a subset of 54 was selected. Comparing the 20 studies reporting on convolutional neural network (CNN)/deep convolutional neural network (DCNN) models, we have a scenario of highly performant DL algorithms, especially in terms of low false positive results, with average values of accuracy (83.99%), sensitivity (77.74%), and specificity (80.61%). Looking at the comparison with diagnoses by clinicians (13 studies), the main difference relies on the specificity values, with a +15.63% increase for the CNN/DCNN models (average specificity of 84.87%) compared to humans (average specificity of 64.24%) with a 14,85% gap in average accuracy; the sensitivity values were comparable (79.77% for DL and 79.78% for humans). To obtain higher diagnostic accuracy and feasibility in clinical practice, rather than in experimental retrospective settings, future DL models should be based on a large dataset integrating dermoscopic images with relevant clinical and anamnestic data that is prospectively tested and adequately compared with physicians.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351129 | PMC |
http://dx.doi.org/10.3390/bioengineering11080758 | DOI Listing |
Background: Pivotal Alzheimer's Disease (AD) trials typically require thousands of participants, resulting in long enrollment timelines and substantial costs. We leverage deep learning predictive models to create prognostic scores (forecasted control outcome) of trial participants and in combination with a linear statistical model to increase statistical power in randomized clinical trials (RCT). This is a straightforward extension of the traditional RCT analysis, allowing for ease of use in any clinical program.
View Article and Find Full Text PDFLecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to amyloid-beta (Aβ) protofibrils, was formally evaluated as a treatment for early Alzheimer's disease in a phase 2 study (Study 201) and the phase 3 Clarity AD study. These trials both included an 18-month, randomized study (core) and an open-label extension (OLE) phase where eligible participants received open-label lecanemab for up to 30 months to date. Clinical (CDR-SB, ADAS-Cog14, and ADCS-MCI-ADL), biomarker (PET, Aβ42/40 ratio, and ptau181) and safety outcomes were evaluated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Relecura, Bangalore, karnataka, India.
Background: Clinical Dementia Rating (CDR) and its evaluation have been important nowadays as its prevalence in older ages after 60 years. Early identification of dementia can help the world to take preventive measures as most of them are treatable. The cellular Automata (CA) framework is a powerful tool in analyzing brain dynamics and modeling the prognosis of Alzheimer's disease.
View Article and Find Full Text PDFBackground: Lecanemab is a humanized IgG1 monoclonal antibody binding with high affinity to protofibrils of amyloid-beta (Aβ) protein. In clinical studies, lecanemab has been shown to reduce markers of amyloid in early symptomatic Alzheimer's disease (AD) and slow decline on clinical endpoints of cognition and function. Herein, a modeling approach was used to correlate amyloid reduction with change in rate of AD progression.
View Article and Find Full Text PDFBackground: Lecanemab is a humanized IgG1 monoclonal antibody that binds with high affinity to Aβ soluble protofibrils. In two clinical study evaluations of lecanemab, Clarity AD (NCT03887455) and lecanemab phase 2 study (Study 201, NCT01767311), the drug showed statistically significant reduction in disease progression during 18 months of treatment relative to placebo. Anti-amyloid immunotherapy can result in higher rates of "pseudo-atrophy" (ie, whole brain volume loss or ventricular enlargement) relative to disease progression observed in placebo-treated subjects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!