Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper proposes a novel finger-individuating exoskeleton system with a non-contact leader-follower control strategy that effectively combines motion functionality and individual adaptability. Our solution comprises the following two interactive components: the leader side and the follower side. The leader side processes joint angle information from the healthy hand during motion via a Leap Motion Controller as the system input, providing more flexible and active operations owing to the non-contact manner. Then, as the follower side, the exoskeleton is driven to assist the user's hand for rehabilitation training according to the input. The exoskeleton mechanism is designed as a universal module that can adapt to various digit sizes and weighs only 40 g. Additionally, the current motion of the exoskeleton is fed back to the system in real time, forming a closed loop to ensure control accuracy. Finally, four experiments validate the design effectiveness and motion performance of the proposed exoskeleton system. The experimental results indicate that our prototype can provide an average force of about 16.5 N for the whole hand during flexing, and the success rate reaches 82.03% in grasping tasks. Importantly, the proposed prototype holds promise for improving rehabilitation outcomes, offering diverse options for different stroke stages or application scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352026 | PMC |
http://dx.doi.org/10.3390/bioengineering11080754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!