A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DiffPhys: Enhancing Signal-to-Noise Ratio in Remote Photoplethysmography Signal Using a Diffusion Model Approach. | LitMetric

DiffPhys: Enhancing Signal-to-Noise Ratio in Remote Photoplethysmography Signal Using a Diffusion Model Approach.

Bioengineering (Basel)

Department of Industrial Engineering and Decision Analytics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Published: July 2024

Remote photoplethysmography (rPPG) is an emerging non-contact method for monitoring cardiovascular health based on facial videos. The quality of the captured videos largely determines the efficacy of rPPG in this application. Traditional rPPG techniques, while effective for heart rate (HR) estimation, often produce signals with an inadequate signal-to-noise ratio (SNR) for reliable vital sign measurement due to artifacts like head motion and measurement noise. Another pivotal factor is the overlooking of the inherent properties of signals generated by rPPG (rPPG-signals). To address these limitations, we introduce DiffPhys, a novel deep generative model particularly designed to enhance the SNR of rPPG-signals. DiffPhys leverages the conditional diffusion model to learn the distribution of rPPG-signals and uses a refined reverse process to generate rPPG-signals with a higher SNR. Experimental results demonstrate that DiffPhys elevates the SNR of rPPG-signals across within-database and cross-database scenarios, facilitating the extraction of cardiovascular metrics such as HR and HRV with greater precision. This enhancement allows for more accurate monitoring of health conditions in non-clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351469PMC
http://dx.doi.org/10.3390/bioengineering11080743DOI Listing

Publication Analysis

Top Keywords

signal-to-noise ratio
8
remote photoplethysmography
8
diffusion model
8
snr rppg-signals
8
rppg-signals
5
diffphys
4
diffphys enhancing
4
enhancing signal-to-noise
4
ratio remote
4
photoplethysmography signal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!