Despite some advances in controlling the progression of prostate cancer (PCa) that is refractory to the use of ADT/ARSI, most patients eventually succumb to the disease, and there is a pressing need to understand the mechanisms that lead to the development of CRPC. A common mechanism is the ability to integrate AR signals from vanishing levels of testosterone, with the frequent participation of YAP as a co-activator, and pointing to the deregulation of the Hippo pathway as a major determinant. We have recently shown that YAP is post-transcriptionally activated via the TLK1>NEK1 axis by stabilizing phosphorylation at Y407. We are now solidifying this work by showing the following: (1) The phosphorylation of Y407 is critical for YAP retention/partition in the nuclei, and J54 (TLK1i) reverses this along with YAP-Y407 dephosphorylation. (2) The enhanced degradation of (cytoplasmic) YAP is increased by J54 counteracting its Enzalutamide-induced accumulation. (3) The basis for all these effects, including YAP nuclear retention, can be explained by the stronger association of pYAP-Y407 with its transcriptional co-activators, AR and TEAD1. (4) We demonstrate that ChIP for GFP-YAP-wt, but hardly for the GFP-YAP-Y407F mutant, at the promoters of typical ARE- and TEAD1-driven genes is readily detected but becomes displaced after treatment with J54. (5) While xenografts of LNCaP cells show rapid regression following treatment with ARSI+J54, in the VCaP model, driven by the oncogenic translocation, tumors initially respond well to the combination but subsequently recur, despite the continuous suppression of pNek1-T141 and pYAP-Y407. This suggests an alternative parallel pathway for CRPC progression for VCaP tumors in the long term, which may be separate from the observed ENZ-driven YAP deregulation, although clearly some YAP gene targets like PD-L1, that are found to accumulate following prolonged ENZ treatment, are still suppressed by the concomitant addition of J54.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352418 | PMC |
http://dx.doi.org/10.3390/cancers16162918 | DOI Listing |
Cancers (Basel)
August 2024
Department of Biochemistry and Molecular Biology, The Feist Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA.
Despite some advances in controlling the progression of prostate cancer (PCa) that is refractory to the use of ADT/ARSI, most patients eventually succumb to the disease, and there is a pressing need to understand the mechanisms that lead to the development of CRPC. A common mechanism is the ability to integrate AR signals from vanishing levels of testosterone, with the frequent participation of YAP as a co-activator, and pointing to the deregulation of the Hippo pathway as a major determinant. We have recently shown that YAP is post-transcriptionally activated via the TLK1>NEK1 axis by stabilizing phosphorylation at Y407.
View Article and Find Full Text PDFInt J Mol Sci
July 2023
Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA.
Androgen deprivation therapy (ADT) has been the mainstay of prostate cancer (PCa) treatment, with success in developing more effective inhibitors of androgen synthesis and antiandrogens in clinical practice. However, hormone deprivation and AR ablation have caused an increase in ADT-insensitive PCas associated with a poor prognosis. Resistance to ADT arises through various mechanisms, and most castration-resistant PCas still rely on the androgen axis, while others become truly androgen receptor (AR)-independent.
View Article and Find Full Text PDFBiomedicines
February 2023
Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA.
The key to preventing mCRPC progression is understanding how androgen-dependent PCa cells progress to independence and modify their transcriptional repertoire accordingly. We recently identified a novel axis of the Hippo pathway characterized by the sequential kinase cascade induced by androgen deprivation, AR>TLK1B>NEK1>pYAP1-Y407, leading to CRPC adaptation. Phosphorylation of YAP1-Y407 increases upon ADT or induction of DNA damage, correlated with the known increase in NEK1 expression/activity, and this is suppressed in the Y407F mutant.
View Article and Find Full Text PDFCancers (Basel)
December 2020
Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA.
Most prostate cancer (PCa) deaths result from progressive failure in standard androgen deprivation therapy (ADT), leading to metastatic castration-resistant PCa (mCRPC); however, the mechanism and key players leading to this are not fully understood. While studying the role of tousled-like kinase 1 (TLK1) and never in mitosis gene A (NIMA)-related kinase 1 (NEK1) in a DNA damage response (DDR)-mediated cell cycle arrest in LNCaP cells treated with bicalutamide, we uncovered that overexpression of wt-NEK1 resulted in a rapid conversion to androgen-independent (AI) growth, analogous to what has been observed when YAP1 is overexpressed. We now report that overexpression of wt-NEK1 results in accumulation of YAP1, suggesting the existence of a TLK1>NEK1>YAP1 axis that leads to adaptation to AI growth.
View Article and Find Full Text PDFCell Cycle
February 2020
Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
The TLK1/Nek1 axis contributes to cell cycle arrest and implementation of the DDR to mediate survival upon DNA damage. However, when the damage is too severe, the cells typically are forced into apoptosis, and the contribution of TLKs in this process has not been investigated. In contrast, it is known that Nek1 may play a role by phosphorylating VDAC1 maintaining proper opening and closure of the channel and thus mitochondrial integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!