A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EEG-Based Seizure Prediction Using Hybrid DenseNet-ViT Network with Attention Fusion. | LitMetric

AI Article Synopsis

  • The study focuses on improving seizure prediction for individuals with epilepsy through a novel hybrid deep learning model that combines DenseNet and Vision Transformer (ViT).
  • DenseNet effectively captures features and reduces parameters, while ViT provides self-attention and represents global features, with an attention fusion layer merging both for better predictions.
  • Using the CHB-MIT dataset for evaluation, the model shows high accuracy and efficiency in prediction, suggesting that this approach could lead to better therapeutic interventions for epilepsy patients.

Article Abstract

Epilepsy seizure prediction is vital for enhancing the quality of life for individuals with epilepsy. In this study, we introduce a novel hybrid deep learning architecture, merging DenseNet and Vision Transformer (ViT) with an attention fusion layer for seizure prediction. DenseNet captures hierarchical features and ensures efficient parameter usage, while ViT offers self-attention mechanisms and global feature representation. The attention fusion layer effectively amalgamates features from both networks, guaranteeing the most relevant information is harnessed for seizure prediction. The raw EEG signals were preprocessed using the short-time Fourier transform (STFT) to implement time-frequency analysis and convert EEG signals into time-frequency matrices. Then, they were fed into the proposed hybrid DenseNet-ViT network model to achieve end-to-end seizure prediction. The CHB-MIT dataset, including data from 24 patients, was used for evaluation and the leave-one-out cross-validation method was utilized to evaluate the performance of the proposed model. Our results demonstrate superior performance in seizure prediction, exhibiting high accuracy and low redundancy, which suggests that combining DenseNet, ViT, and the attention mechanism can significantly enhance prediction capabilities and facilitate more precise therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352294PMC
http://dx.doi.org/10.3390/brainsci14080839DOI Listing

Publication Analysis

Top Keywords

seizure prediction
24
attention fusion
12
hybrid densenet-vit
8
densenet-vit network
8
vit attention
8
fusion layer
8
eeg signals
8
prediction
7
seizure
5
eeg-based seizure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!