Grapevine leafroll-associated virus 3 (GLRaV-3) is a formidable threat to the stability of the global grape and wine industries. It is the primary etiological agent of grapevine leafroll disease (GLD) and significantly impairs vine health, fruit quality, and yield. GLRaV-3 is a member of the genus , family. Viral genes within the 3' proximal unique gene blocks (UGB) remain highly variable and poorly understood. The UGBs of viruses include diverse open reading frames (ORFs) that have been shown to contribute to viral functions such as the suppression of the host RNA silencing defense response and systemic viral spread. This study investigates the role of GLRaV-3 ORF8, ORF9, and ORF10, which encode the proteins p21, p20A, and p20B, respectively. These genes represent largely unexplored facets of the GLRaV-3 genome. Here, we visualize the subcellular localization of wildtype and mutagenized GLRaV-3 ORFs 8, 9, and 10, transiently expressed in . Our results indicate that p21 localizes to the cytosol, p20A associates with microtubules, and p20B is trafficked into the nucleus to carry out the suppression of host RNA silencing. The findings presented herein provide a foundation for future research aimed at the characterization of the functions of these ORFs. In the long run, it would also facilitate the development of innovative strategies to understand GLRaV-3, mitigate its spread, and impacts on grapevines and the global wine industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352578 | PMC |
http://dx.doi.org/10.3390/biom14080977 | DOI Listing |
Histol Histopathol
December 2024
Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
Recent advancements in single-cell spatial proteomics have revolutionized our ability to elucidate cellular signaling networks and their implications in health and disease. This review examines these cutting-edge technologies, focusing on mass spectrometry (MS) imaging and multiplexed immunofluorescence (mIF). Such approaches allow high-resolution protein profiling at the single-cell level, revealing intricate cellular heterogeneity, spatial organization, and protein functions within their native cellular contexts.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China. Electronic address:
The ABORTED MICROSPORES (AMS) gene is crucial for tapetal cell development and pollen formation, but its role in Upland cotton (Gossypium hirsutum) has not been previously documented. This study identified GhAMS11 as a key transcription factor, with its high expression specifically observed during the S4-S6 stages of anther development, a critical period for tapetal activity and pollen formation. Subcellular localization confirmed that GhAMS11 was located in the nucleus.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA. Electronic address:
Cell
December 2024
Chan Zuckerberg Biohub, San Francisco, CA, USA. Electronic address:
Defining the subcellular distribution of all human proteins and their remodeling across cellular states remains a central goal in cell biology. Here, we present a high-resolution strategy to map subcellular organization using organelle immunocapture coupled to mass spectrometry. We apply this workflow to a cell-wide collection of membranous and membraneless compartments.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China. Electronic address:
Hybrid sweetgum (Liquidambar styraciflua × L. formosana) is a globally significant forest tree resource, exhibiting significant economic, ornamental, ecological and medicinal values. Somatic embryogenesis (SE) is an effective reproductive strategy, having great application potential and economic value in large-scale propagation, artificial seed production, genetic transformation, germplasm preservation and biotechnology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!