A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational Modeling Study of the Molecular Basis of dNTP Selectivity in Human Terminal Deoxynucleotidyltransferase. | LitMetric

Human terminal deoxynucleotidyl transferase (TdT) can catalyze template-independent DNA synthesis during the V(D)J recombination and DNA repair through nonhomologous end joining. The capacity for template-independent random addition of nucleotides to single-stranded DNA makes this polymerase useful in various molecular biological applications involving sequential stepwise synthesis of oligonucleotides using modified dNTP. Nonetheless, a serious limitation to the applications of this enzyme is strong selectivity of human TdT toward dNTPs in the order dGTP > dTTP ≈ dATP > dCTP. This study involved molecular dynamics to simulate a potential impact of amino acid substitutions on the enzyme's selectivity toward dNTPs. It was found that the formation of stable hydrogen bonds between a nitrogenous base and amino acid residues at positions 395 and 456 is crucial for the preferences for dNTPs. A set of single-substitution and double-substitution mutants at these positions was analyzed by molecular dynamics simulations. The data revealed two TdT mutants-containing either substitution D395N or substitutions D395N+E456N-that possess substantially equalized selectivity toward various dNTPs as compared to the wild-type enzyme. These results will enable rational design of TdT-like enzymes with equalized dNTP selectivity for biotechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352444PMC
http://dx.doi.org/10.3390/biom14080961DOI Listing

Publication Analysis

Top Keywords

dntp selectivity
8
selectivity human
8
human terminal
8
molecular dynamics
8
amino acid
8
selectivity dntps
8
selectivity
5
computational modeling
4
modeling study
4
molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!