Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pulmonary hypertension (PH) is a progressive disease marked by pulmonary vascular remodeling and right ventricular failure. Inflammation and oxidative stress are critical in PH pathogenesis, with early pulmonary vascular inflammation preceding vascular remodeling. Extracellular superoxide dismutase (EC-SOD), a key vascular antioxidant enzyme, mitigates oxidative stress and protects against inflammation and fibrosis in diverse lung and vascular disease models. This study utilizes a murine hypobaric hypoxia model to investigate the role of lung EC-SOD on hypoxia-induced platelet activation and platelet lung accumulation, a critical factor in PH-related inflammation. We found that lung EC-SOD overexpression blocked hypoxia-induced platelet activation and platelet accumulation in the lung. Though lung EC-SOD overexpression increased lung EC-SOD content, it did not impact plasma extracellular SOD activity. However, ex vivo, exogenous extracellular SOD treatment specifically blunted convulxin-induced platelet activation but did not blunt platelet activation with thrombin or ADP. Our data identify platelets as a novel target of EC-SOD in response to hypoxia, providing a foundation to advance the understanding of dysregulated redox signaling and platelet activation in PH and other chronic hypoxic lung diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351248 | PMC |
http://dx.doi.org/10.3390/antiox13080975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!