Comparative Study of Flavonoid Profiles, Antioxidant, and Antiproliferative Activities in Hot-Air and Vacuum Drying of Different Parts of Pitaya ( Britt) Flowers.

Antioxidants (Basel)

School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China.

Published: August 2024

Pitaya flower, a medicinal and edible plant commonly used in tropical and subtropical regions, was the focus of this study, which compared the effects of hot-air drying (HAD) and vacuum drying (VD) on phytochemical profiles and biological activities of its four parts: calyx, petals, stamens, and pistils. Both drying methods significantly increased the total phenolic content (TPC) of pitaya flowers, with values ranging from 1.86 to 3.24 times higher than those of fresh samples. Twelve flavonoid compounds were identified in pitaya flowers, with the glycoside derivatives of three flavonols (kaempferol, isorhamnetin, and quercetin) being the most abundant. VD resulted in 1.15 times higher total flavonoid glycoside content than HAD, whereas in petals, HAD yielded a total flavonoid glycoside content 1.21 times higher than VD. Both HAD and VD effectively increased the antioxidant capacities of pitaya flowers, though the difference between the two methods was not significant. Additionally, both drying methods enhanced the antiproliferative activity of pitaya flowers, with HAD showing a more significant effect than VD. The present study emphasized the efficacy of drying methods for enhancing flavonoids in pitaya flowers and provided insights for functional products' innovation with different parts of pitaya flowers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351529PMC
http://dx.doi.org/10.3390/antiox13080956DOI Listing

Publication Analysis

Top Keywords

pitaya flowers
24
drying methods
12
times higher
12
vacuum drying
8
pitaya
8
parts pitaya
8
total flavonoid
8
flavonoid glycoside
8
glycoside content
8
flowers
7

Similar Publications

Comprehensive mapping of molecular cytogenetic markers in pitaya () and related species.

Front Plant Sci

December 2024

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China.

Pitaya (; 2n=22) is an important fruit crop from the family, originally domesticated in Mexico and the USA, and is now widely cultivated for its nutritional benefits. It is characterized by its distinctive triangular-shaped stems and large, showy flowers, thriving in arid and semi-arid environments, particularly in hot, dry climates. However, systematic chromosomal studies, including chromosomal mapping of cytogenetic markers in pitaya, are limited, presenting challenges for its cytogenetic improvement.

View Article and Find Full Text PDF

The poetry of nitrogen and carbon metabolic shifts: The role of C/N in pitaya phase change.

Plant Sci

November 2024

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Pitaya, a desert plant, has an underexplored flowering mechanism due to a lack of functional validation assays. This study reveals that the transition from vegetative to generative growth in pitaya is regulated by significant metabolic shift, underscoring the importance of understanding and address the challenging issue pitaya's phase change. Lateral buds from 6-years-old 'Guanhuahong' pitaya (Hylocereus monacanthus) plants were collected on April 8th, 18th, and 28th 2023, representing early, middle, and late stages of phase transition, respectively.

View Article and Find Full Text PDF

Comparative Study of Flavonoid Profiles, Antioxidant, and Antiproliferative Activities in Hot-Air and Vacuum Drying of Different Parts of Pitaya ( Britt) Flowers.

Antioxidants (Basel)

August 2024

School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangzhou 510640, China.

Pitaya flower, a medicinal and edible plant commonly used in tropical and subtropical regions, was the focus of this study, which compared the effects of hot-air drying (HAD) and vacuum drying (VD) on phytochemical profiles and biological activities of its four parts: calyx, petals, stamens, and pistils. Both drying methods significantly increased the total phenolic content (TPC) of pitaya flowers, with values ranging from 1.86 to 3.

View Article and Find Full Text PDF

Drought-inducible HpbHLH70 enhances drought tolerance and may accelerate floral bud induction in pitaya.

Int J Biol Macromol

October 2024

Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering, College of Life Sciences, Guiyang 550025, Guizhou Province, China. Electronic address:

Floral bud induction is of great importance for fruit crops, which may substantially affect fruit yield. Previously, a FLOWERING BHLH (FBH) transcription factor gene HpbHLH70 was identified in pitaya (Hylocereus polyrhizus) as subjected to drought stress. In present work, HpbHLH70 was found predominantly activated in pitaya anthers.

View Article and Find Full Text PDF

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!