A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the Therapeutic Potential of Green-Synthesized Gold Nanoparticles and Extract for Inflammatory Bowel Disease. | LitMetric

Exploring the Therapeutic Potential of Green-Synthesized Gold Nanoparticles and Extract for Inflammatory Bowel Disease.

Antioxidants (Basel)

Departamento de Morfologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Ceará, Fortaleza 60440-900, Brazil.

Published: July 2024

Addressing disease remission and treatment adherence in inflammatory bowel diseases (IBDs), such as Crohn's disease, poses significant challenges due to underlying oxidative and inflammatory processes. Nanotechnology emerges as a promising avenue for enhancing therapeutic outcomes in IBD by optimizing drug bioactivity, reducing toxicity, and extending circulation time. Gold nanoparticles, known for their resistance to gastrointestinal pH and possessing antioxidant and anti-inflammatory properties, offer particular promise. They can be produced by green synthesis with seaweed (ES), itself associated with gastroprotective and anti-inflammatory activities. In a murine model of Crohn's disease induced with 8% acetic acid, pretreatment with dexamethasone (0.2 mL/30 g) or Au@ES (25 and 50 mg/kg) effectively mitigated inflammatory features. Notably, ES (50 mg/kg) and Au@ES (50 mg/kg) administration resulted in significant reductions in both macroscopic and microscopic inflammation scores compared to the disease control group. Furthermore, these treatments normalized inflammatory cytokine expression while safeguarding myenteric plexus glial cells. They also impeded neutrophil activation, leading to reduced myeloperoxidase activity and lipid peroxidation, coupled with increased glutathione levels. In conclusion, ES and Au@ES exhibit potent efficacy in counteracting inflammation and oxidation processes in an experimental Crohn's disease model, suggesting their potential as alternative therapeutic strategies for IBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351725PMC
http://dx.doi.org/10.3390/antiox13080884DOI Listing

Publication Analysis

Top Keywords

crohn's disease
12
gold nanoparticles
8
inflammatory bowel
8
au@es mg/kg
8
disease
6
inflammatory
5
exploring therapeutic
4
therapeutic potential
4
potential green-synthesized
4
green-synthesized gold
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!