Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial intelligence-guided closed-loop experimentation has emerged as a promising method for optimization of objective functions, but the substantial potential of this traditionally black-box approach to uncovering new chemical knowledge has remained largely untapped. Here we report the integration of closed-loop experiments with physics-based feature selection and supervised learning, denoted as closed-loop transfer (CLT), to yield chemical insights in parallel with optimization of objective functions. CLT was used to examine the factors dictating the photostability in solution of light-harvesting donor-acceptor molecules used in a variety of organic electronics applications, and showed fundamental insights including the importance of high-energy regions of the triplet state manifold. This was possible following automated modular synthesis and experimental characterization of only around 1.5% of the theoretical chemical space. This physics-informed model for photostability was strengthened using multiple experimental test sets and validated by tuning the triplet excited-state energy of the solvent to break out of the observed plateau in the closed-loop photostability optimization process. Further applications of CLT to additional materials systems support the generalizability of this strategy for augmenting closed-loop strategies. Broadly, these findings show that combining interpretable supervised learning models and physics-based features with closed-loop discovery processes can rapidly provide fundamental chemical insights.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-07892-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!