Numerous correlated many-body phases, both conventional and exotic, have been reported in magic-angle twisted bilayer graphene (MATBG). However, the dynamics associated with these correlated states, crucial for understanding the underlying physics, remain unexplored. Here we combine exciton sensing and optical pump-probe spectroscopy to investigate the dynamics of isospin orders in MATBG with WSe substrate across the entire flat band, achieving sub-picosecond resolution. We observe remarkably slow isospin dynamics in a broad filling range around ν = 2 and between ν = -3 and -2, with lifetimes of up to 300 ps that decouple from the much faster cooling of electronic temperature (about 10 ps). This non-thermal behaviour demonstrates the presence of abnormally long-lived modes in the isospin degrees of freedom. This observation, not anticipated by theory, implies the existence of long-range propagating collective modes, strong isospin fluctuations and memory effects and is probably associated with an intervalley coherent or incommensurate Kekulé spiral ground state. We further demonstrate non-equilibrium control of the isospin orders previously found around integer fillings. Specifically, through ultrafast manipulation, it can be transiently shifted away from integer fillings. Our study demonstrates a unique probe of collective excitations in MATBG and paves the way for actively controlling non-equilibrium phenomena in moiré systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-07880-5 | DOI Listing |
Nanoscale
January 2025
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.
View Article and Find Full Text PDFAdv Mater
January 2025
Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan.
Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain.
The chiral lattice structure of twisted bilayer graphene with D_{6} symmetry allows for intrinsic photogalvanic effects only at off-normal incidence, while additional extrinsic effects are known to be induced by a substrate or a gate potential. In this Letter, we first compute the intrinsic effects and show they reverse sign at the magic angle, revealing a band inversion at the Γ point. We next consider different extrinsic effects, showing how they can be used to track the strengths of the substrate coupling or electric displacement field.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Grupo NanoTech, Facultad de Ingeniería y Ciencias Básicas, Fundación Universitaria Los Libertadores, Bogotá 111221, Colombia.
The Cooper-pair distribution function Dcp(ω,Tc) of Untwisted-Misaligned Bilayer Graphene (UMBLG) in the presence of an external electric field is calculated and analysed within the framework of first-principle calculations. A bilayer graphene structure is proposed using a structural geometric approximation, enabling the simulation of a structure rotated at a small angle, avoiding a supercell calculation. The Dcp(ω,Tc) function of UMBLG indicates the presence of the superconducting state for specific structural configurations, which is consistent with the superconductivity in Twisted Bilayer Graphene (TBLG) reported in the literature.
View Article and Find Full Text PDFNature
December 2024
Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China.
The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!