Model based deep learning method for focused ultrasound pathway scanning.

Sci Rep

Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Published: August 2024

The primary purpose of high-intensity focused ultrasound (HIFU), a non-invasive medical therapy, is to precisely target and ablate tumors by focusing high-frequency ultrasound from an external power source. A series of ablations must be performed in order to treat a big volume of tumors, as a single ablation can only remove a small amount of tissue. To maximize therapeutic efficacy while minimizing adverse side effects such as skin burns, preoperative treatment planning is essential in determining the focal site and sonication duration for each ablation. Here, we introduce a machine learning-based approach for designing HIFU treatment plans, which makes use of a map of the material characteristics unique to a patient alongside an accurate thermal simulation. A numerical model was employed to solve the governing equations of HIFU process and to simulate the HIFU absorption mechanism, including ensuing heat transfer process and the temperature rise during the sonication period. To validate the accuracy of this numerical model, a series of tests was conducted using ex vivo bovine liver. The findings indicate that the developed models properly represent the considerable variances observed in tumor geometrical shapes and proficiently generate well-defined closed treated regions based on imaging data. The proposed strategy facilitated the formulation of high-quality treatment plans, with an average tissue over- or under-treatment rate of less than 0.06%. The efficacy of the numerical model in accurately predicting the heating process of HIFU, when combined with machine learning techniques, was validated through quantitative comparison with experimental data. The proposed approach in cooperation with HIFU simulation holds the potential to enhance presurgical HIFU plan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358149PMC
http://dx.doi.org/10.1038/s41598-024-70689-9DOI Listing

Publication Analysis

Top Keywords

numerical model
12
focused ultrasound
8
treatment plans
8
data proposed
8
hifu
7
model
4
model based
4
based deep
4
deep learning
4
learning method
4

Similar Publications

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.

View Article and Find Full Text PDF

Estimating spatiotemporal maps of greenhouse gases (GHGs) is important for understanding climate change and developing mitigation strategies. However, current methods face challenges, including the coarse resolution of numerical models, and gaps in satellite data, making it essential to improve the spatiotemporal estimation of GHGs. This study aims to develop an advanced technique to produce high-fidelity (1 km) maps of CO and CH over the Arabian Peninsula, a highly vulnerable region to climate change.

View Article and Find Full Text PDF

A novel method for solving the multiple-attribute decision-making problem is proposed using the complex Diophantine interval-valued Pythagorean normal set (CDIVPNS). This study aims to discuss aggregating operations and how they are interpreted. We discuss the concept of CDIVPN weighted averaging (CDIVPNWA), CDIVPN weighted geometric (CDIVPNWG), generalized CDIVPN weighted averaging (CGDIVPNWA) and generalized CGDIVPN weighted geometric (CGDIVPNWG).

View Article and Find Full Text PDF

This study explores the risk management challenges associated with safety-critical systems required to execute specific missions. The working component experiences degradation governed by a continuous-time discrete-state Markov chain, whose failure leads to an immediate system breakdown and safety losses. To enhance system survivability, a limited number of identical spares are available for online replacement throughout the mission.

View Article and Find Full Text PDF

Bactericidal activity of gold and silver nanoparticles in solution and supported on polyhihydroxybutyrate nanospheres.

Int J Biol Macromol

January 2025

Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:

This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!