A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sparse-spike seismic inversion with semismooth newton algorithm solver. | LitMetric

Sparse-spike seismic inversion with semismooth newton algorithm solver.

Sci Rep

School of Mathematics and Information, China West Normal University, Nanchong, 637009, China.

Published: August 2024

Seismic prospecting has been widely used in the exploration and development of underground geological resources, such as mineral products (e.x., coal, uranium deposit), oil and gas, groundwater, and so forth. Seismic impedance is a physical characteristic parameter of underground formation, which can be used in lithologic classification, rock characterization, stratigraphic correlation, and further mineral reservoir prediction, reserve estimation, and so forth. To estimate impedance from seismic data, one must perform reflectivity series inversion first. Under a simple exponential integration transformation, the reflectivity series can give the final estimated impedance. Sparse-spike seismic inversion is the most common method to obtain reflectivity series with high resolution. It adopts a sparse regularization to impose sparsity on reflectivity series. From sparse reflectivity series, the final estimated impedance has blocky features to make formation interfaces and geological edges precise, which is very important to accurately delineate the distribution range of mineral resources. The development of sparse-spike seismic inversion is still facing major challenges of fast optimization algorithms in real-life application, especially for massive seismic data in 3D case. Semismooth Newton algorithm (SNA), which is a second order mehtod and has super-linear, even quadratic convergence rate, is used to solve sparse-spike seismic inversion. The proposed algorithm has been compared with common used algorithms through a synthetic seismic trace and a 3D real seismic data volume. The results show that the proposed algorithm has faster convergence rate and fewer computation time. It provides a new effective algorithm to solve sparse-spike seismic inversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358434PMC
http://dx.doi.org/10.1038/s41598-024-71088-wDOI Listing

Publication Analysis

Top Keywords

sparse-spike seismic
20
seismic inversion
20
reflectivity series
20
seismic data
12
seismic
10
semismooth newton
8
newton algorithm
8
series final
8
final estimated
8
estimated impedance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!