AI Article Synopsis

  • * The study investigated the effects of biochar application on wheat varieties (FSD08 and PUNJAB-11) under salinity stress, using different sodium chloride levels and biochar concentrations.
  • * Results showed that biochar significantly mitigated the negative impacts of salt on growth and yield, and enhanced the plant's self-defense mechanisms, suggesting it as a beneficial amendment for sustainable crop production in saline conditions.

Article Abstract

Globally from abiotic stresses, salt stress is the major stress that limits crop production. One of them is wheat that has been utilized by more than 1/3 of the world population as staple food due to its nutritive value. Biochar is an activated carbon that can ameliorate the negative impacts on plants under saline conditions. The present study was conducted to examine the ameliorative impact of "Biochar application" to Triticum aestivum L. plant grown under salinity stress and evaluated on the basis of various growth, yield, physiological, biochemical attributes. Preliminary experiment was done to select the Triticum aestivum L. varieties with 90% germination rate for further experiment. The selected varieties, FSD08 and PUNJAB-11 of wheat were treated with two levels of sodium chloride (0 mM and 120 mM). Two varieties of wheat included FSD08 and PUNJAB-11 were treated with two levels of sodium chloride (0 mM and 120 mM). To address the impact of salt stress two levels of biochar 0% and 5% was used as exogenous application. A three way completely randomized experimentation was done in 24 pots of two wheat varieties with three replicates. The results demonstrated that salt stress affected growth, physiological attributes, yield and inorganic mineral ions (Ca and K) in roots and shoots parameters of wheat negatively while biochar overall improved the performance of plant. SOD, CAT, APX and POD activities enhanced during salt stress as the plant self-defense mechanism against salinity to minimize the damaging effect. Salt stress also significantly increased the membrane permeability, and levels of HO, MDA, Cl and Na ions. Biochar treatment nullified negative impacts of NaCl and improved the plant growth and yield significantly. Hence, biochar amendment can be suggested as suitable supplement for sustainable crop production under salinization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358134PMC
http://dx.doi.org/10.1038/s41598-024-70917-2DOI Listing

Publication Analysis

Top Keywords

salt stress
24
growth yield
12
triticum aestivum
12
stress
8
crop production
8
negative impacts
8
fsd08 punjab-11
8
treated levels
8
levels sodium
8
sodium chloride
8

Similar Publications

We herein investigated the effects of salt (NaCl) stress on soybean nodulation by rhizobial strains. We specifically exami-ned: (1) the effects of NaCl on nodule maturity and positioning by inoculating three rhizobial strains (Bradyrhizobium diazoefficiens USDA110, Bradyrhizobium elkanii USDA31, and Sinorhizobium fredii USDA191) onto soybean variety CNS, (2) the effects of the NaCl treatment on isoflavones (daidzein and genistein) secretion by CNS, (3) the effects of the NaCl treatment on gene expression induced by daidzein and genistein in rhizobia, and (4) the effects of the NaCl treatment on rhizobial growth. The results obtained were as follows: (1) the NaCl treatment delayed nodule development and reduced nodulation on the primary root following the USDA110 inoculation, minimal sensitivity regarding nodule formation in the USDA 31 inoculation, and significantly increased the mature nodule number and nodules on the primary root following the USDA 191 inoculation.

View Article and Find Full Text PDF

Integrated metabolomic and transcriptomic analysis reveals the role of root phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass.

BMC Plant Biol

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, P.R. China.

Perennial ryegrass (Lolium perenne) is a widely cultivated forage and turf grass species. Salt stress can severely damage the growth of grass plants. The genome-wide molecular mechanisms of salt tolerance have not been well understood in perennial grass species.

View Article and Find Full Text PDF

The role of trehalose metabolism in plant stress tolerance.

J Adv Res

December 2024

College of Forestry and Grasslands, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China. Electronic address:

Background: Trehalose is a nonreducing disaccharide containing two glucose molecules linked through an α,α-1,1-glycosidic bond. This unique chemical structure causes trehalose levels to fluctuate significantly in plants under stress, where it functions as an osmoprotectant, enhancing plant resistance to stress. Previous studies have confirmed that the trehalose synthesis pathway is widely conserved across most plants.

View Article and Find Full Text PDF

Chinese jujube (Ziziphus jujuba Mill.) exhibits a remarkable resilience to both drought and salinity. Additionally, it is characterized by a high sugar content, with sucrose being the predominant component of its soluble sugars.

View Article and Find Full Text PDF
Article Synopsis
  • * Overexpression of MaFLA27 led to increased expression of genes involved in cell wall components and modification, contributing to thicker cell walls and higher levels of cellulose, lignin, and certain pectins in plants.
  • * In contrast to wild-type plants, MaFLA27-overexpressing plants showed lower levels of pectin methyl-esterification and reduced reactive oxygen species after cold exposure, indicating a potential mechanism for improved cold tolerance linked to cell wall modifications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!