We present GPSat; an open-source Python programming library for performing efficient interpolation of non-stationary satellite altimetry data, using scalable Gaussian process techniques. We use GPSat to generate complete maps of daily 50 km-gridded Arctic sea ice radar freeboard, and find that, relative to a previous interpolation scheme, GPSat offers a 504 × computational speedup, with less than 4 mm difference on the derived freeboards on average. We then demonstrate the scalability of GPSat through freeboard interpolation at 5 km resolution, and Sea-Level Anomalies (SLA) at the resolution of the altimeter footprint. Interpolated 5 km radar freeboards show strong agreement with airborne data (linear correlation of 0.66). Footprint-level SLA interpolation also shows improvements in predictive skill over linear regression. In this work, we suggest that GPSat could overcome the computational bottlenecks faced in many altimetry-based interpolation routines, and hence advance critical understanding of ocean and sea ice variability over short spatio-temporal scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358133PMC
http://dx.doi.org/10.1038/s41467-024-51900-xDOI Listing

Publication Analysis

Top Keywords

satellite altimetry
8
altimetry data
8
sea ice
8
gpsat
5
interpolation
5
scalable interpolation
4
interpolation satellite
4
data probabilistic
4
probabilistic machine
4
machine learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!