Origins of complexity in the rheology of Soft Earth suspensions.

Nat Commun

Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Published: August 2024

When wet soil becomes fully saturated by intense rainfall, or is shaken by an earthquake, it may fluidize catastrophically. Sand-rich slurries are treated as granular suspensions, where the failure is related to an unjamming transition, and friction is controlled by particle concentration and pore pressure. Mud flows are modeled as gels, where yielding and shear-thinning behaviors arise from inter-particle attraction and clustering. Here we show that the full range of complex flow behaviors previously reported for natural debris flows can be reproduced with three ingredients: water, silica sand, and kaolin clay. Going from sand-rich to clay-rich suspensions, we observe continuous transition from brittle (Coulomb-like) to ductile (plastic) yielding. We propose a general constitutive relation for soil suspensions, with a particle rearrangement time that is controlled by yield stress and jamming distance. Our experimental results are supported by models for amorphous solids, suggesting that the paradigm of non-equilibrium phase transitions can help us understand and predict the complex behaviors of Soft Earth suspensions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358436PMC
http://dx.doi.org/10.1038/s41467-024-51357-yDOI Listing

Publication Analysis

Top Keywords

soft earth
8
earth suspensions
8
suspensions
5
origins complexity
4
complexity rheology
4
rheology soft
4
suspensions wet
4
wet soil
4
soil fully
4
fully saturated
4

Similar Publications

Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH)SO solution.

View Article and Find Full Text PDF

Interactions and Oscillatory Dynamics of Chemically Powered Soft Swimmers.

J Phys Chem B

December 2024

Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States.

We report the interactions and dynamics of chemically powered soft swimmers that undergo autonomous oscillatory motion. The interaction of autonomous entities is the basis for the development of collective behaviors among biological organisms. Collective behaviors enable organisms to efficiently attain food and coordinate against threats.

View Article and Find Full Text PDF

Unlabelled: The lunar environment heliospheric X-ray imager (LEXI) and solar wind-magnetosphere-ionosphere link explorer (SMILE) will observe the magnetopause motion in soft X-rays to understand dayside reconnection modes as a function of solar wind conditions after their respective launches in the near future. To support their successful science mission, we investigate the relationship between the magnetopause position and the dayside reconnection rate by utilizing super dual auroral radar network (SuperDARN) observations and widely used empirical models of magnetopause position (Shue et al. in J Geophys Res 103:17691-17700.

View Article and Find Full Text PDF

Exposure pathways (diet, dissolved or particulate substrate) of rare earth elements to aquatic organisms.

Ecotoxicol Environ Saf

December 2024

School of the Environment, Trent University, Peterborough, Canada; Environmental and Life Science graduate program, Trent University, Peterborough, Canada; Department of Chemistry, Trent University, Peterborough, Canada.

The global extraction and use of rare earth elements (REEs) continue to rise as they are implemented in technologies that improve human and environmental livelihoods. However, the general understanding of transfer processes and fates of REEs in aquatic systems remains limited. Here, we aim to determine the REEs' main exposure pathways, e.

View Article and Find Full Text PDF

Rare Earth Elements and Yttrium (REY) are widely used as proxies for environmental conditions and biogeochemical processes, but have also become (micro)contaminants of surface waters worldwide. Soft tissues and shells of mussels are increasingly used in environmental science and geology as bioarchives for REY, but REY fractionation by and in these organisms is still not well understood. We report on the distribution of REY in different compartments of marine M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!