Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Marine phosphatization events cause episodic carbonate fluorapatite (CFA) precipitation on seamounts, and are commonly linked to growth hiatuses in ferromanganese (Fe-Mn) crusts. However, the complete record of these events and their paleoenvironmental significance remains poorly understood, in large part due to poor age constraints. Here, we apply U-Pb dating to CFA in Fe-Mn crusts from Western Pacific seamounts. These data exhibit good alignment with Sr isotope ages, revealing six potential phosphatization events. This established CFA chronology tightens the timespan of phosphatization events and refines the age framework of Fe-Mn crusts. We subsequently utilize a multiproxy approach to demonstrate that the phosphatization events occurred coeval with the expansion of oceanic oxygen minimum zones. The Western Pacific Fe-Mn crusts thus document major perturbations in global oceanic phosphorus cycling, which appear to have been driven by climate-induced increases in primary productivity linked to changes in global ocean circulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358449 | PMC |
http://dx.doi.org/10.1038/s41467-024-51598-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!