Group I metabotropic glutamate receptors (mGluRs) modulate postsynaptic neuronal excitability and epileptogenesis. We investigated roles of group I mGluRs on low extracellular Mg concentration ([Mg])-induced epileptiform activity and neuronal cell death in the CA1 regions of isolated rat hippocampal slices without the entorhinal cortex using extracellular recording and propidium iodide staining. Exposure to Mg-free artificial cerebrospinal fluid can induce interictal epileptiform activity in the CA1 regions of rat hippocampal slices. MPEP, a mGluR 5 antagonist, significantly inhibited the spike firing of the low [Mg]-induced epileptiform activity, whereas LY367385, a mGluR1 antagonist, did not. DHPG, a group 1 mGluR agonist, significantly increased the spike firing of the epileptiform activity. U73122, a PLC inhibitor, inhibited the spike firing. Thapsigargin, an ER Ca-ATPase antagonist, significantly inhibited the spike firing and amplitude of the epileptiform activity. Both the IP receptor antagonist 2-APB and the ryanodine receptor antagonist dantrolene significantly inhibited the spike firing. The PKC inhibitors such as chelerythrine and GF109203X, significantly increased the spike firing. Flufenamic acid, a relatively specific TRPC 1, 4, 5 channel antagonist, significantly inhibited the spike firing, whereas SKF96365, a relatively non-specific TRPC channel antagonist, did not. MPEP significantly decreased low [Mg] DMEM-induced neuronal cell death in the CA1 regions, but LY367385 did not. We suggest that mGluR 5 is involved in low [Mg]induced interictal epileptiform activity in the CA1 regions of rat hippocampal slices through PLC, release of Ca from intracellular stores and PKC and TRPC channels, which could be involved in neuronal cell death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362004 | PMC |
http://dx.doi.org/10.4196/kjpp.2024.28.5.413 | DOI Listing |
Epilepsia
January 2025
Epilepsy Unit, Hôpital Gui de Chauliac, Montpellier, France.
Contemporary studies report nonconvulsive status epilepticus (NCSE) in Creutzfeldt-Jakob disease (CJD), based on benzodiazepine (BZP)-responsive epileptiform discharges on the electroencephalogram (EEG), with the following false syllogism: (1) intravenous (IV) administration of BZPs usually suppress ictal activity in NCSE; (2) in CJD, periodic sharp wave complexes (PSWCs) are suppressed by IV BZPs; (3) therefore, these patients have NCSE. This is a simplistic and invalid conclusion, because authors of 20th-century science reports have clearly shown that IV BZPs, short-acting barbiturates, and drugs with no antiseizure effects, such as chloral hydrate and IV naloxone, suppress PSWCs, but patients fall asleep with no clinical improvement. In contrast, IV methylphenidate transiently improves both the EEG and clinical states.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Manganese (Mn) is an essential metal that serves as a cofactor for metalloenzymes important in moderating the glutamate/glutamine cycle and other oxidative stress pathways. Typically, Mn is acquired through the diet, however, Mn overexposure can arise through drinking inadequately treated well water or inhalation of Mn-containing industrial byproducts. Mn toxicity disrupts dopaminergic neurotransmission resulting in a Parkinsonian disorder referred to as manganism.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
Background: Patients with Alzheimer's Disease and related dementias associated with the accumulation of pathological tau (tauopathies) in neurons have an increased incidence of epileptic episodes and sub-clinical epileptiform activity. This neuronal hyperexcitability represents some of the earliest changes in patient brains, is associated with more severe symptoms, and presents an opportunity for early therapeutic intervention. Despite these provocative observations, the molecular details of how tau and neuronal excitability are connected in tauopathies remain unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California San Francisco, San Francisco, CA, USA.
Background: Neural circuit hyperexcitability and impaired excitation-to-inhibition (E/I) activity is believed to be a key contributor to synaptic and network degeneration in Alzheimer's disease (AD). Extensive preclinical research on transgenic animal models of AD have demonstrated neuronal and circuit level E/I imbalance mediated by amyloid-beta (Aβ) and tau proteins. Synaptic and network deficits are also integral changes of aging.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, 200032, China.
Focal cortical dysplasia (FCD) is a highly heterogeneous neurodevelopmental malformation, the underlying mechanisms of which remain largely elusive. In this study, personalized dorsal and ventral forebrain organoids (DFOs/VFOs) are generated derived from brain astrocytes of patients with FCD type II (FCD II). The pathological features of dysmorphic neurons, balloon cells, and astrogliosis are successfully replicated in patient-derived DFOs, but not in VFOs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!