Wastewater-effluent discharge and incomplete denitrification drive riverine CO, CH and NO emissions.

Sci Total Environ

Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands. Electronic address:

Published: November 2024

Rivers are well-known sources of the greenhouse gasses (GHG) carbon dioxide (CO), methane (CH) and nitrous oxide (NO). These emissions from rivers can increase because of anthropogenic activities, such as agricultural fertilizer input or the discharge of treated wastewater, as these often contain elevated nutrient concentrations. Yet, the specific effects of wastewater effluent discharge on river GHG emissions remain poorly understood. Here, we studied two lowland rivers which both receive municipal wastewater effluent: river Linge and river Kromme Rijn. Dissolved concentrations and fluxes of CH, NO and CO were measured upstream, downstream and at discharge locations, alongside water column properties and sediment composition. Microbial communities in the sediment and water column were analysed using 16S rRNA gene sequencing. In general, observed GHG emissions from Linge and Kromme Rijn were comparable to eutrophic rivers in urban and agricultural environments. CO emissions peaked at most discharge locations, likely resulting from dissolved CO present in the effluent. CH emission was highest 2 km downstream, suggesting biological production by methanogenic activity stimulated by the effluents' carbon and nutrient supply. Dissolved NO concentrations were strongly related to NO content of the water column which points towards incomplete riverine denitrification. Notably, methanogenic archaea were more abundant downstream of effluent discharge locations. However, overall microbial community composition remained relatively unaffected in both rivers. In conclusion, we demonstrate a clear link between wastewater effluent discharge and enhanced downstream GHG emission of two rivers. Mitigating the impact of wastewater effluent on receiving rivers will be crucial to reduce riverine GHG contributions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175797DOI Listing

Publication Analysis

Top Keywords

wastewater effluent
16
effluent discharge
12
discharge locations
12
water column
12
emissions rivers
8
ghg emissions
8
kromme rijn
8
dissolved concentrations
8
rivers
7
discharge
6

Similar Publications

The fate of intracellular and extracellular antibiotic resistance genes during ultrafiltration-ultraviolet-chlorination in a full-scale wastewater tretament plant.

J Hazard Mater

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia. Electronic address:

Effluent from wastewater treatment plants (WWTPs) is recognized as a significant source of antibiotic resistance genes (ARGs) in the environment. Advanced treatment processes such as ultrafiltration (UF), ultraviolet (UV) light disinfection, and chlorination have emerged as promising approaches for ARG removal. However, the efficacy of sequential disinfection processes, such as UF-UV-chlorination on intracellular (iARGs) and extracellular ARGs (eARGs), remains largely unknown.

View Article and Find Full Text PDF

The present investigation assessed the viability of utilizing a powdered clam shell in continuous adsorption to eliminate nickel ions from simulated wastewater. The breakthrough curves (BTC) were analyzed by altering the Q (inlet flow rate) in a glass column (ID 5 cm, H 35 cm) with a multi-port and filled with the powdered clamshell adsorbent (PCSA). The PCSA's nickel adsorption efficiency was maximum (87.

View Article and Find Full Text PDF

Occurrence and potential risk of steroid hormones in selected surface water and wastewater treatment plants in western Kenya.

Environ Pollut

December 2024

Department of Exposure Science, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig Germany; Department Evolutionary Ecology & Environmental Toxicology, Institute of Ecology, Evolution and Diversity-Goethe University, Max-von-Laue-Straße 13, Frankfurt am Main, Germany. Electronic address:

Steroid hormones are significant contributors to endocrine disruption, affecting the hormonal functions of both humans and aquatic organisms. However, data on their occurrence and risks in fresh water systems particularly in low- and middle-income countries, is scarce. In this regard, a comprehensive investigation of 58 steroid hormones in rivers and wastewater treatment plants (WWTPs) was conducted in western Kenya.

View Article and Find Full Text PDF

The discharge of chlorinated effluent from wastewater treatment plants enhances dissolved oxygen in the receiving river: From laboratory study to practical application.

Water Res

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

Dissolved oxygen (DO) is essential for the health of aquatic ecosystems, supporting biogeochemical cycles and the decomposition of organic matter. However, continuous untreated external inputs from illicit discharges or sewer overflows, coupled with inadequate ecological base flow, have led to widespread river deoxygenation and serious ecological crises. This study demonstrates that chlorinated wastewater treatment plant (WWTP) effluent can significantly enhance DO levels in downstream rivers, particularly in areas with high pollution loads or poor ecological base flow.

View Article and Find Full Text PDF

Sulfur autotrophic denitrification (SAD) is a promising technology for nitrogen removal, particularly suitable for low carbon-to-nitrogen wastewater without additional carbon sources. However, SAD inevitably generates significant amounts of SO. To address this issue, combining SAD with iron-carbon micro-electrolysis technology, which can reduce sulfate, provides electron donors for autotrophic denitrification and facilitates sulfur cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!