Cryptococcus gattii and its medical implications have been extensively studied. There is, however, a significant knowledge gap regarding cryptococcal survival in its environmental niche, namely woody material, which is glaring given that infection is linked to environmental populations. A gene from C. gattii (WM276), the predominant global molecular type (VGI), has been sequenced and annotated as a putative cellulase. It is therefore, of both medical and industrial intertest to delineate the structure and function of this enzyme. A homology model of the enzyme was constructed as a fusion protein to a maltose binding protein (MBP). The CGB_E4160W gene was overexpressed as an MBP fusion enzyme in Escherichia coli T7 cells and purified to homogeneity using amylose affinity chromatography. The structural and functional character of the enzyme was investigated using fluorescence spectroscopy and enzyme activity assays, respectively. The optimal enzyme pH and temperature were found to be 6.0 and 50 °C, respectively, with an optimal salt concentration of 500 mM. Secondary structure analysis using Far-UV CD reveals that the MBP fusion protein is primarily α-helical with some β-sheets. Intrinsic tryptophan fluorescence illustrates that the MBP-cellulase undergoes a conformational change in the presence of its substrate, CMC-Na. The thermotolerant and halotolerant nature of this particular cellulase, makes it useful for industrial applications, and adds to our understanding of the pathogen's environmental physiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2024.106594 | DOI Listing |
Rev Soc Bras Med Trop
January 2025
Universidade Federal do Paraná, Departamento de Clínica Médica, Programa de pós-graduação em Medicina Interna e Ciências da Saúde, Curitiba, PR, Brasil.
Cryptococcal disease is the third most common invasive fungal infection in solid organ transplant recipients and is associated with high-morbidity and -mortality rates. Donor-derived Cryptococcus spp. infection typically manifests within the first month post-procedure and has historically been caused by C.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.
View Article and Find Full Text PDFBioorg Chem
January 2025
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Thirteen new meroterpenoids, acremorins A-M (1, 2, 4, 6, 7 and 9-16), together with three known analogues (3, 5 and 8) were isolated from the deep-sea-derived fungus Acremonium sclerotigenum LW14 guided by the genomic and OSMAC strategy. Their structures and absolute configurations were established by extensive spectroscopic analysis, electronic circular dichroism (ECD) calculations, Rh(OCOCF)-induced ECD experiments, and a single-crystal X-ray diffraction experiment. Compounds 2, 4, 6 and 9 represent the rare brominated ascochlorins.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
Cryptococcosis is a fungal disease in humans and animals, caused by the and species complexes. Clinical cryptococcosis primarily manifests as upper respiratory tract disease; however, dissemination to other organs, particularly the brain, can occur. Nasal colonisation and subclinical cryptococcosis are common in koalas () due to their shared environmental niche with : trees.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
Cryptococcus gattii is a saprophytic basidiomycete that grows in the environment and can cause systemic cryptococcosis. Ocular cryptococcosis causes blindness and is commonly associated with central nervous system (CNS) infection. Toll-like receptor 9 (TLR9) can control cryptococcosis and another mycosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!