This work investigated the stability of the Upflow Anaerobic Sludge Blanket (UASB) reactor under psychrophilic temperatures with varying feed streams, simulating typical and concentrated sewage. In Phase I, treating municipal wastewater, chemical oxygen demand (COD) removal dropped from 77 ± 6 % to 41 ± 2 % as hydraulic retention time decreased from 24 to 12 h and organic loading rate (OLR) increased from 0.6 to 1.3 gCOD/(L∙d). In Phase II, at a similar OLR (≈1.2 gCOD/(L∙d)), the UASB treated organic-rich effluents (from 1.0 to 2.1 ± 0.1 gCOD/L) resulting from the pre-treatment of the forward osmosis (FO) process. The UASB performance improved significantly, achieving 87 ± 3 % COD removal and 63 ± 4 % methane recovery, with microbial analysis confirming methanogen growth. The COD mass balance showed up to 30 % more electrical energy recovery from sewage compared to conventional wastewater treatment plants (WWTPs), indicating that the FO-UASB combination is a promising approach to achieve energy-neutral operation in WWTPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!